Functional Compilation and Functional
Program Analysis

By
Ashraful Islam
Supervisor: Dr. Thomas Gilray

Reported to
Dr. Da Yan
Department of Computer Science
The University of Alabama at Birmingham

Semester: Fall 2023
November 29, 2023

Contents
1 Abstract
2 Introduction

3 Functional Programming

3.1 Lambda Calculus e
3.2 Fundamental Concepts L
3.2.1 First-class Functions
3.2.2 Higher-order Functions e
3.2.3 Pure Functions e e
3.2.4 Strict and Lazy Evaluation
4 Functional Program Analysis
4.1 Dynamic Analysis e
4.2 Static Analysis L e
4.3 Control Flow Analysis e
4.3.1 0-CFA . . . e
4.3.2 k-CFA . . . e
5 Language and Compiler Design
5.1 The Brouhaha Language e
5.2 Compiler Design e e e
5.2.1 Desugaring e e e e e
5.2.2 Alphatization e e
5.2.3 ANF Conversion v o v v i i e e e
5.2.4 CPS Conversion e e
5.2.5 Closure Conversion v i v i i e e e e e
5.2.6 Code Generation e e
6 Abstract Interpretation
6.1 Limitation of Concrete Interpretation,
6.2 Abstract Interpretation and Galois Connection
6.3 Challenges and Limitations
6.4 Abstracting Abstract Machines (AAM) L
6.4.1 CEK Machine e
6.4.2 CESK Machine e e
6.4.3 CESK* Machine e
6.5 Environment Analysis L e e
6.6 Abstract Counting e
7 Implementation Approaches For Reasoning Systems
7.1 Interprocedural Program Analysis (TPA)
7.2 SAT e
7.3 Datalog e e
7.3.1 Soufflé e
7.3.2 FLix . . o e e e
7.3.3 Datafun
7.3.4 IncA . .o e
7.3.5 Ascent e
7.3.6 Slog . . . o e
7.3.7 Slog-Based Analysis

8 Future Research Direction

9 Conclusion

32

1 Abstract

Functional programming (FP) focuses on mathematical functions and immutable data structures, setting it
apart from imperative programming which often depends on mutability and side effects. While imperative
programming frequently use state changes, FP prioritizes encapsulation and composability. Its inherently
expressive and maintainable nature has driven FP’s principles into not only pure functional languages
but also multi-paradigm languages such as Java and C++. The analysis of functional programs on the
other hand employs techniques such as type inference, control-flow analysis, and program transformation.
These methodologies allow for a comprehensive understanding and reasoning about program behaviors.
This analytical aspect has its roots in lambda calculus which forms the theoretical backbone of functional
programming. Abstract interpretation, a notable static analysis technique, approximates a program’s behavior,
and abstract machines—like CEK and CESK—provide the means to implement these techniques. The
utilization of such analyses benefits functional compilers immensely. As they transform a high-level program
into an efficient low-level code through multiple phases, insights from techniques like abstract interpretation
and continuation-passing style empower them to detect bugs and seize optimization opportunities more
effectively. As a result, functional compilation and functional program analysis have grown into pivotal areas
of research in computer science, especially in the areas of parallelism, modularity, and language design.

2 Introduction

Functional programming (FP) is a programming paradigm that focuses on mathematical functions and
immutable data structures for writing programs unlike traditional imperative programming, which revolves
around making repeated effects to the program. While FP promotes encapsulation and composability,
imperative programming often leads to complicated invariants and is susceptible to bugs due to the extensive
use of assignment operation [1]. Over the years, FP has made a significant impact on both academia and
industry due to its expressive and maintainable nature [2, 3, 4, 5, 6]. As a result, it has been widely adopted
not just in purely functional languages like Haskell, Standard ML (SML), Scheme, Clojure, Miranda, and
Scala, but also in multi-paradigm languages such as Java and C++, which now includes lambdas, maps, and
other functional features [7, 8, 9, 10, 11, 12, 13, 14]. FP has also become a critical research field in computer
science, especially in the areas of parallelism, modularity, and language design [15, 16, 17].

Functional program analysis applies mathematical logic and methods such as type inference [18, 19], control-
flow analysis [20, 21, 22, 23, 24], and program transformation [25, 26] to reason about programs and improve
their efficiency and correctness. However, these methods are influenced by earlier work and have their roots
in lambda calculus, which is a formal system for expressing computation based on only the three capacities
of function abstraction, function application, and variable reference [27]. Since its inception, A-calculus has
formed the theoretical backbone of functional programming, and its principles have been extensively studied
[25]. Hence, functional compilers and their associated optimization approaches rely heavily on A-calculus to
perform their tasks efficiently [26]. For example, the Glasgow Haskell Compiler is widely adopted in academia
and industry, featuring advanced optimization techniques and a rich ecosystem of libraries [28, 29].

Functional compilers typically undergo several passes to transform a high-level input program into efficient
low-level code that can be executed on various platforms. For example, one of the initial simplifications
performed by a functional compiler involves eliminating complex language features, such as core macros, by
replacing them with semantically equivalent simpler forms. This pass is commonly known as desugaring. The
next pass is Alphatization, which transforms a program to ensure that every variable-binding has a distinct
name for a single binding point. Then Administrative Normal Form (ANF) conversion administratively
binds each sub-expression to a unique identifier and enforces an explicit order of evaluation to simplify
the continuation structure [30]. The continuation-passing-style (CPS) conversion is the next pass, which
imposes a constraint on call sites to always be in the tail position, meaning that functions never return in the
conventional sense; instead, a continuation is explicitly passed forward to be invoked on the return point
[31]. CPS is a source-to-source translation that implements the stack, and it is also possible to reconstruct
a program back to its direct-style form with no loss of efficiency or analysis results [32, 33]. After these
passes, the program is ready for the closure-conversion pass, which removes free variables by requiring an

explicit environment structure [34, 35]. The final pass is often code generation, where the program is typically
compiled down to C or C++, and linked with libraries for the target platform [34].

Abstract interpretation is a static analysis technique that approximates program behavior over abstract
domains. This technique has been extensively used in functional programming analyses and serves applications
such as proving program properties, bug detection, compiler optimization, and so on [36, 37, 38, 39]. One
approach to implementing this technique is to use abstract machines and interpreters, such as CE, CEK,
CESK, and CESK" [39, 40, 41, 42, 43, 44]. These simplified models of computation and interpreters provide
the foundation for analyzing programs and a basis for further optimizations.

This survey paper provides a comprehensive overview of functional compilation and functional program
analysis covering essential topics such as A-calculus, compiler construction, and abstract interpretation. It
also summarizes the latest developments in the field and discusses the significance of abstract machines and
interpreters [42, 43, 44]. As part of our ongoing research, we are working on a prototype compiler and using
SLOGI45] for performing analyses such as abstract counting [46] on it. By doing so, we are trying to address
novel research problems, evaluate the compiler’s performance, and figure out opportunities for optimization.

The remainder of the survey is structured as follows. In Section 3 we provide a brief introduction to functional
programming, lambda calculus, and FP concepts. Section 4 discusses functional program analysis and some
of its methodologies. Then, in Section 5, we define a functional language and demonstrate how our prototype
functional compiler works for that language. Moving forward, we cover abstract interpretation and abstract
machines in Section 6. Then, Section ?? covers modern Datalog languages and how we are performing
program analysis using a Datalog-like language—Slog. Section 8 outlines future research directions and finally,
Section 9 concludes the survey.

3 Functional Programming

Functional programming (FP) is both a paradigm and an approach that has deeply impacted the history and
development of computer science. Its roots can be traced back to the foundational works in the A-calculus
introduced by Alonzo Church [27], which established the groundwork for understanding computation through
function application. The fundamental operation in a functional program is the application of functions to
arguments, where the main program takes input and returns the output as a result. Much like mathematical
functions, typically the main program or function is composed of multiple layers of functions, each defined in
terms of others, until reaching the foundational language primitives [3].

One of the defining characteristics of FP is its focus on immutability and the use of first-class functions.
Unlike imperative programming, where computation largely centers around mutable states and the sequences
in which commands are executed, functional programming emphasizes the declarative description of what
should be computed, rather than how it should be computed [4].

Python Code ; Racket Code
>> def sum(lst): >> (define (sum 1st)
total = O (cond [(null? 1st) O]
for num in lst: [else
total += num (+ (car 1st)
return total (sum (cdr 1st))

)1))
>> sum([1, 2, 3])
output: 6 >> (sum (list 1 2 3))
; output: 6

Figure 1: Comparison between imperative and functional programming

For example, a program written in imperative style often computes a value step-by-step, where we exactly
describe how to perform a computation as shown in the left side of Figure 1. We begin the computation
process by assigning total=0, then accessing each item from the list, while repeatedly updating the total
variable, and finally returning the summation of the list. In contrast programs written in functional style as
shown on the right side of Figure 1, we perform the computation in a declarative way—analogous to how we
define mathematical functions—Dby describing what the sum of a list is in terms of its structure, rather than
detailing how to compute it step-by-step. Here, we check if the list is null?, and if so the sum is 0. Otherwise,
the sum is the first element of the list added to the sum of the remaining elements. This shift in focus offers
numerous benefits, including increased expressiveness, easier reasoning about program behavior, and natural
facilities for parallelism and concurrency.

During the latter part of the 20th century, functional programming made its mark with languages like Scheme,
introduced by Sussman and Steele [9], as well as Miranda [11] and Haskell [7]. Each of these languages
supported unique features of the FP paradigm and significantly impacted both academia and the real-world
software domain. Notably, Haskell—which is a purely functional language—contributed to a great extent to
evolving FP concepts such as lazy evaluation, type classes, and monads [28, 29].

Yet, functional programming is not just a way to write code; it is deeply rooted in the foundational theories
of computer science. The ties among FP, program analysis, and compiler optimization techniques, notably
abstract interpretation and continuation-passing style highlight how FP combines conceptual theory with
actual practice [36, 37, 47, 33]. Researchers such as Landin [40], Felleisen, and Friedman [42, 43] further
illustrate these intricate interactions in their pivotal works.

In recent years, functional programming principles have not remained confined to purely functional languages.
Hybrid languages, such as Scala [12] and Clojure [10], have emerged, fusing functional paradigms with
object-oriented and imperative paradigms. Some of the other well-known functional languages include ML,
OCaml, Lisp, Erlang, F#, and Racket [8, 48, 49, 50, 51, 52, 53, 54]. Now, most of the multi-paradigm languages,
including Java, C++, Python, C#, Ruby, Go, PHP, Kotlin, Rust, Perl, and JavaScript have also embraced
functional concepts [13, 14, 55, 56, 57, 58, 59, 60, 61, 62, 63], signaling a broader industry acceptance and
appreciation of the benefits that FP can offer.

Over time, FP has evolved, leading to the development of numerous influential programming languages,
theories, and methodologies, and remained at the forefront of both academic research and industry application.
By providing tools and methodologies that allow for rigorous analysis, elegant solutions, and scalable
applications, FP servers as a crucial area of study for anyone interested in the future of computation.

In this section, we first provide a brief introduction to lambda calculus (Section 3.1), and then we talk about
some of the fundamental concepts of functional programming (Section 3.2).

3.1 Lambda Calculus

The heart of any functional programming language are the three essential forms of the lambda calculus:
lambda abstraction (defining a function), application (invoking a function), and variable reference. In fact,
the rest of Scheme (or any other programming language) can be compiled down into the language consisting
of just these three forms: defining unary (single input) functions that bind a variable when invoked, invoking
functions on a single argument expression, and referencing a variable. Compiling down to the pure lambda
calculus is called Church compiling/encoding, after the creator of the lambda calculus, Alonzo Church.

While there are many different lambda calculi—systems for calculating (calculi) using functions (lambdas)—
the lambda calculus generally refers to a specific classic system: the untyped, three-form lambda calculus
with unary functions. We can define a grammar for its expressions/terms like so:

e,t € Eu= (A (@) e) Az. ep
| Cer eq) ey ep
P :

x,y € Var = (program identifiers)

It is also common to see a notation without (required) parentheses and with a dot before the body of lambdas
(alternatively shown on right)—A is highest precedence.

Lambda calculus is found within many programming languages; it is the heart of functional programming
languages such as Racket, Haskell, OCaml, but is also found within multi-paradigm languages permitting
first-class functions such as Python, Ruby, Javascript, and even Java, and C++. For instance:

Python: id = lambda x: x
Java: Function<Object, Object> id = x -> x;

Javascript: const id = x => x;

With an application form, we may apply an identity function on a value, which will yield that value unchanged.
Let’s take the identity function (A (x) z) and apply it to the number 5: ((A (z) z) 5). This expression
may be textually simplified using an evaluation-step relation (—): ((A ()) 5) — 5.

(A @)z @))= O @y

In pure lambda calculus, we do not have the ability to represent a constant like 5, but could still apply the
identity function on itself as shown above.

3.2 Fundamental Concepts

This sub-section introduces several programming concepts that are prevalent in functional programming but
are seldom encountered in other paradigms.

3.2.1 First-class Functions

In computer science, the term functions as first-class citizens was first used in the mid-1960s [64]. The idea
is that, in a language, if we can pass functions to other functions as arguments, can have functions that
return other functions as their results, and allow functions to be assigned to variables or stored within various
data structures, then the language supports first-class functions. With this feature, functions are not merely
procedural constructs but are recognized as first-class entities—mumbers, strings, etc.—in the language.

Taking a step further, Scheme—a functional programming language (a dialect of Lisp)—introduced proper
support for lexically scoped first-class functions through closures [64]. A closures encapsulates a function
together with an environment of bound variables, ensuring that the function has access to the variables it
is supposed to, even when it is executed in a different scope. This handling of free-variables has profound
implications for function behavior and memory management.

3.2.2 Higher-order Functions

Higher-order functions are those that can both accept other functions as parameters and return functions as
results. A language with first-class functions often implies the availability of higher-order functions in the
language.

For example, the make-adder function in the left side of Figure 2 is an example of a first-class function
because it is treated like any other variable. It returns a lambda function that takes a parameter y and adds
it to . We assign this returned function to the variable addi, illustrating that functions can be assigned to
variables and thus are first-class citizens in the language. Finally, when we make a call to the add! function
with argument 2, to produce the final output as 3.

On the other hand, in the right side of Figure 2, we show how higher-order functions work by using map and
filter. First, we define a list containing numbers I to 5 and assign it to the variable Ist. The map function
takes the list and applies the addl function to each of the numbers to increment them by 7 and finally
returns the output. Whereas, the filter function takes the output of map applied on Ist as input and applies
the predicate even? to each of the items and finally returns the output.

; First-class function example ; Higher-order function example
>> (define (make-adder x) >> (define 1lst (list 1 2 3 4 5))

(lambda (y) (+ x y)))
>> (map addl 1st)

>> (define addl (make-adder 1)) ; output: ‘(2 3 4 5 6)
>> (add1l 2) >> (filter even? (map addl 1st))
; output: 3 ; output: ‘(2 4 6)

Figure 2: First-class and Higher-order functions (implemented in Racket)

Functional languages extensively use higher-order functions such as map, filter, apply, etc., to provide a level
of abstraction and flexibility that is not possible with just first-class functions, allowing programmers to write
more generalized and reusable code.

3.2.3 Pure Functions

A function is said to be pure if it does not have any side effects and always yields the same result for a given
input making it have no discernible impact on the broader program execution. It can also be said that we can
always replace a pure function with its result without changing the outcome of the program i.e., an expression
may safely be replaced by its value [65]. This property ensures predictability and reproducibility, echoing
the characteristics of mathematical functions and strengthening the theoretical foundations of functional
programming. The simplicity and clarity introduced by pure functions facilitate easier program analysis,
driving more accurate and efficient evaluations of program behavior. Functional programming advocates the
use of pure functions and the absence of side effects has several benefits including opportunities for compiler
optimizations, and faster code transformation.

3.2.4 Strict and Lazy Evaluation

Based on the order of evaluation of expressions, a functional programming language can be categorized as
either strict/eager or lazy/delayed. For example, SML is a strict language, while Haskell adopted a lazy
evaluation strategy. In literature, they are often referred to by different names, for instance, call-by-value
(CBV) means strict evaluation, whereas call-by-need (CBN) means lazy evaluation. The evaluation order
differs by how they treat arguments to functions. In strict evaluation, a function’s arguments are reduced
first before applying the function itself, while in lazy evaluation, a function gets called with unevaluated
arguments, and they are only reduced if the computation requires them in order to continue. One of the
benefits of this delayed evaluation is that, once they are reduced, this reduced value is then cached to avoid
any recomputation (also known as memorization [66]). Both of the evaluation order has their benefit over the
other one, strict languages are easier to reason in terms of asymptotic complexity, while for lazy languages
reasoning about programs are not usually straightforward [15]. Figure 3 shows how these evaluation strategies
typically work in a functional language (in this case lambda calculus). Here, -reduction simulates function
application (i.e., invocation, instantiation).

(A 7 (2 2) w) (A My (A (=2) 2))
=g (X (y) y) W) —g (A (2) 2) w)
%ﬂ w *)/3 w

Figure 3: A side-by-side comparison of evaluation strategies: Strict (left), Lazy (right)

4 Functional Program Analysis

The analysis of functional programs played a vital role in terms of enriching our comprehension and refinement
of functional programming paradigms over the years. It helps us in examining and interpreting functional
code, ensuring its accuracy and efficiency. This meticulous examination highlights FP’s capacity for delivering
concise, readable, and maintainable code, bolstered by its underlying mathematical principles. The trajectory
of functional program analysis began in 1969 with the first systematic evaluation of LISP programs [67]. The
initial phase focused on the intricate structures and behaviors inherent in Lisp-like data constructs [68, 69].
This foundation spurred a series of advancements, with studies and techniques evolving and expanding in
complexity and depth. The ongoing evolution underscores the sustained importance of functional program
analysis in understanding and optimizing program behaviors from its inception to contemporary applications.

In this section, first, we briefly cover two program analysis approaches in Section 4.1 and Section 4.2. Then,
in Section 4.3 control-flow analysis is discussed.

4.1 Dynamic Analysis

Dynamic analysis is a program analysis technique that examines program properties during the actual
execution of a program [70]. It is facilitated through program instrumentation—a process of inserting
additional statements into a program to create traces. This process adeptly evaluates a program’s runtime
behaviors, capturing and recording specific execution events that are encapsulated within a dynamic state, also
referred to as profiling or tracing [71, 72, 73]. These recorded events encompass a broad spectrum including the
execution of lines of code, basic blocks, control edges, and routines [74]. The effectiveness of dynamic analysis
hinges on the efficiency of the instrumentation and profiling infrastructures [75] and these systems must be
adept at collecting comprehensive runtime information without compromising the program’s operational
efficiency. This information then becomes instrumental for enhancing the program’s memory layout to improve
locality, identifying dominant program segments for optimization, and facilitating debugging among other
applications [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. Over the years, various dynamic analysis tools have
been established to perform these functions effectively, including but not limited to Valgrind, Google Address
sanitizer, Daikon, Javana, Purify, DynaMetrics, and Caffeine [77, 88, 83, 81, 80, 87, 89]. However, a notable
limitation looms over dynamic analysis results because of its specificity to the set of inputs used during
testing. This constraint makes the analysis results not universally applicable to future program executions or
reliable for applications requiring precise input, such as semantics-preserving code transformations [90]. Tt
is worth noting that while dynamic analysis excels in bug detection and offers a granular understanding of
program behavior, it cannot be used to prove program properties [91], unlike static analysis.

4.2 Static Analysis

Static analysis is a program analysis technique that, unlike dynamic analysis, reasons about the behavior of
programs without running them. Its root can be traced back to the 1970s when it was primarily used for
compiler optimizations [92]. Since then this technique has been studied extensively by computer scientists and
applied in real-world software by engineers or developers [93, 90]. Nowadays, it is integral in various stages of
program development, including identifying potential errors early in the development process, verification,
optimization, refactoring, and maintenance [94, 95]. It is especially crucial for certifying critical software and
enhancing the quality of general-purpose applications. A static program analyzer is a program itself that
reason about the behavior of other programs [96]. Over the years for most of the multi-paradigm languages,
a number of analyzers or tools based on static analysis techniques have been developed. Some of the most
prominent tools are Lint, FindBugs, SpotBugs, CryptoGuard, PMD, mygcc, Synopsys, Clang Static Analyzer,
PyLint, Pyflakes, and Frosted, CrySL [97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108].

Although every possible behavior of a program cannot be entirely predicted due to the undecidability issues
stated by Turing [109] and Rice [110], static program analysis, with appropriate approximations, can inspect
all conceivable executions of the program [96]. Analyzing a program’s source text, static analysis aims to
discern and predict the program’s behavior. It strives to offer guarantees about the program’s operation,
balancing the need for precision with the necessity for efficiency. This balance is crucial for producing

results that are actionable and reliable without being overly resource-intensive or time-consuming [96, 111].
Compared to dynamic analysis, static analysis has the advantage of not affecting the program’s performance
during execution and provides an opportunity to identify and rectify issues before the program is put into use
[95]. Dynamic analysis, while offering real-time insights, can impact performance and does not necessarily
lead to immediate remediation of identified issues.

4.3 Control Flow Analysis

The term control-flow analysis (CFA) was first used for lambda calculus in 1981 [20, 21] and since then
CFA of functional programs has been an active area of research for the past four decades. It helps us to
approximate which values a variable might take on during a program’s execution allowing us to understand a
program’s behavior. In a program without higher-order functions, the operator of a function call is explicitly
discernible from the program’s text, given that it is represented by a lexically visible identifier. Consequently,
the called function is accessible at compile time, allowing an analysis to directly correlate with the program’s
control flow [39].

For example, notice the simple Python function (in Figure 4) named add that takes in two arguments and
returns their sum. When we call the add function with the numbers 4 and 5, it is quite clear from the code
that the add function will be executed. The function being called, which we refer to as the operator, is
directly visible in the code. In this kind of scenario, where the control flow is evident at compile time, is
relatively straightforward to analyze.

Python Code ; Racket Code
>> def add(x, y): >> (define (add x y)
return x + y (+ x y))
>> (add 4 5) >> (define (apply fname x y)
output: 6 (fname x y))

>> (apply add 4 5)
; output: 6

Figure 4: A side-by-side comparison of programs: with and without Higher-Order functions

In contrast, in programs that use higher-order functions, identifying the operator of a function call from the
program’s text can be more complex: the operator can emerge as an outcome of a specific computation, making
it inaccessible until the program is run. This complexity necessitates the implementation of control-flow
analysis to estimate during compile-time the functions that might potentially be invoked during runtime.

For example (see Figure 4), we have two functions: apply and add. The apply function takes another function
as its first argument and then two numbers. It then calls the passed function with the two numbers as its
arguments. So, when we call apply with add and the numbers 4 and 5, the add function is executed, and
we get the final sum as a result. Notice the operator of the function call, in this case, is the apply function.
But indirectly, it is also the add function because apply calls the add function in its body. This dynamic
nature means that the actual function being executed might not be determined until runtime and this is
what makes the control flow less obvious during compile time. In essence, this analysis aids in predicting
the potential pathways the program might follow during its execution, providing insights into the dynamic
behaviors exhibited in the presence of higher-order functions.

Control flow analysis has been studied extensively over the years and evolved significantly in terms of
advancements in application techniques, proof of soundness, and methodological refinements [22, 23, 24, 46,
112, 113, 114, 115, 116].

4.3.1 0-CFA

0-CFA is a monovariant analysis or context-insensitive analysis developed by Shivers’ for Scheme [23, 24].
Sometimes it is also referred to as inclusion-based [117] or subset-based analysis [118]. During the analysis,
operationally it neglects coordination between bindings and merges all bindings of the same variable, trading
precision for efficiency. Despite this, 0-CFA is surprisingly effective in practice [119] and runs in cubic time
and variants are used in optimizing compilers like Bigloo [120] and MLton [121]. Operationally, in 0-CFA
there is just one abstract address per variable that exists in a program. For example, consider a program
that has a variable z, and it was bounded in 10 places. All 10 references to the variable z will be merged and
mapped to one abstract address in the analysis without keeping track of any context/scope for the variable z.

The original 0-CFA of Shivers is actually flow-sensitive, which computes an abstract environment per
expression rather than maintaining a global one [39, 122]. Other contemporary researchers worked on a
flow-insensitive approach that went through a lot of refinement in subsequent years [113, 114, 115, 116, 123].
However, flow-sensitivity alone does not significantly improve precision in purely functional languages, but
combining it with other abstractions can [124].

4.3.2 k-CFA

Unlike, 0-CFA, k-CFA is a polyvariant analysis meaning that it enhances the the precision of the analysis by
incorporating context sensitivity, which considers the calling context of functions. It works by approximating
the dynamic calling contexts of a program up to a certain fixed length, to analyze the flow of values to
expressions and variables more accurately than the context-insensitive 0-CFA. In 1991 in his PhD thesis
Shivers, proposed 1-CFA and hinted towards a generalized implementation of k-CFA [24]. The complexity of
k-CFA is significant; for instance, it has been proven to be complete for EXPTIME [125], implying that for
any fixed k, the analysis can simulate an exponential time Turing machine. Later on, in order to improve
k-CFA’s efficiency without compromising precision, polynomial-time variants have been introduced, which
offer consistent context distinction across the analysis [126]. Furthermore, for object-oriented languages,
where the distinction between objects and closures enables more streamlined analyses, a context-sensitive,
polynomial-time analysis (m-CFA) closely resembling the precision of traditional k-CFA was developed [127].

Operationally, an analysis based on k-CFA would use an address allocation scheme to represent abstract
bindings and these address then becomes the key parameter for tuning the analysis. However, there is
a fundamental limitation in how k-CFA works i.e., no matter how much context we add to our analysis
by increasing the k parameter. It cannot be determined with a 100% guarantee that given two abstract
environments they are equal or not. It is possible that environments are abstractly equal but their concrete
values may not be equal in all the cases. Might and Shivers however addressed this limitation with environment
analysis [46] making it the most precise context-sensitive analysis in the family of CFA. We briefly discuss
environment analysis in Section 6.5.

5 Language and Compiler Design

To illustrate the concepts of a typical functional compiler, we do not require a language with a very large
set of features. Therefore, in this section, we formally define a functional language Brouhaha—which is a
minimal Racket-like language (Section 5.1), and then we demonstrate how our prototype functional compiler
works for the Brouhaha language (Section 5.2).

5.1 The Brouhaha Language

The Brouhaha language only has top-level defines, and we may define it using a context-free grammar, see
Figure 5. Top-level functions can handle a varying number of parameters, similar to functions in the Racket
language. The function body is composed of expressions, which can be as simple as a variable reference or as
complex as a series of expressions, and operations, including literals, primitive operations, and conditional
statements. Each function in Brouhaha, whether defined at the top level or as a lambda expression, can take
multiple parameters, echoing the flexibility found in Racket’s variadic functions.

10

The quote construct allows the direct inclusion of atomic values such as numbers, boolean, strings, and
symbols—which do not require any evaluation. For operations, prim applies built-in functions to multiple
arguments, whereas apply-prim is used for single-argument cases. The language handles decision-making
through if, and, or, and not constructs while other forms like let, let*, and apply in Brouhaha also functions
just like Racket.

def)”
define ({var) (var)*) (exp))

(program) ::=
(def) ::=
(exp) = (var)

quote (datum))

prim (op) {exp)*)

apply-prim (op) (exp))

lambda ({var)*) (e

lambda (var) (exp))

(
(
= (va
| (
| (
| (
| (
| (
| (let (((var) (exp))*) {(exp))
| (let* (({var) (exp))*) (exp))
| (if (exp) (exp) (exp))
| (and (exp)”)
| (or (exp)™)
| (not (exp))
| (apply (exp) (exp))
| ((exp) (exp)”)
(var) ::= (program identifiers)
(datum) ::= {
= (

{op) =:

integer) | (float) | (boolean) | (string) | (symbol)

set of built-in primitives)

Figure 5: The Brouhaha language IR

5.2 Compiler Design

The Brouhaha compiler takes a source brouhaha file and undergoes a series of passes, where the output from
one pass serves as the input for the next pass. In the end, the compiler generates a C++ file that can be
compiled to produce the same output as the brouhaha source file does. To illustrate this process, we will
trace the transformation of the following (see Figure 6) factorial function (implemented in Racket) through
each pass.

(define (fact n)
(let* ([zero 0]
[one 11)
(if (= zero n)
one
(* n (fact (- n omne))))))

Figure 6: The factorial function

In this section, we will discuss the following compiler passes: Desugaring, Alphatization, Administrative

11

Normal Form (ANF) Conversion, Continuation-Passing Style (CPS) Conversion, Closure Conversion, and
Code Generation. Figure 7 depicts the overall structure of the compiler.

[Input File: input.haha]

(Desuéaring)
(Alphatlization)
(ANF Colnversion)
(CPS Colnversion)
(Closure Clonversion)
(Code Gelneration)
[Emit C++: clompiled. cop

Figure 7: The compiler structure

5.2.1 Desugaring

Brouhaha is a minimal Racket-like language, but it supports a variety of complex language features and in this
pass, the compiler removes these features with semantically equivalent simpler forms. Although these features
provide a programmer more flexibility to write the same code in different ways, it makes the compilation
process harder. So, removing the syntactic sugar ensures that the remaining compiler passes can only focus
on simpler or core language forms.

Brouhaha has two types of functions: top-level defines and lambdas. Each function can be of the following
three distinct categories: fully variadic functions, fixed arity functions, and functions with improper lists
that allow optional arguments. To support the latter in our language, we desugar them into fully variadic
functions, see Figure 8.

((lambda (a b . c) c) 1 2 3 4 5)

_>desugar

((lambda vargs
(let ([a (car vargs)]
[vargs (cdr vargs)])
(let ([b (car vargs)]
[vargs (cdr vargs)])
(let ([c vargs]) c))))
’1 ’2 ’3 ’4 ’5b)

Figure 8: Function with improper list to fully variadic function
We desugar let* in terms of nested lets and other features such as and, or, not are expressed in terms of if
form. Whereas datums are desugared into (quote datum). So, after this pass, our language only contains its

core features and we may define it using a context-free grammar, see Figure 9.

Example Figure 10 shows the transformation of the factorial function following the desugaring pass. It
also shows how let* form is expressed in terms of nested lets.

12

(exp) 1= (var)

= (va

(quote (datum))
(prim (op) (exp)”)
(apply-prim (op) (exp))
(lambda ((var)*) (exp))
(lambda (var) (exp))

(let (((var) (exp))*) (exp))
(if (exp) (exp) (exp))
(apply (exp) (exp))

(

|
|
|
|
|
|
|
|
| ({exp) (exp)”)

Figure 9: Desugar IR

(define (fact n)
(let ((zero ’0))
(let ((one ’1))
(if (= zero n)
one
(¥ n (fact (- n one)))))))

Figure 10: Factorial function after Desugaring

5.2.2 Alphatization

Alphatization, also known as a-conversion, transforms a program to ensure that every variable binding has a
distinct name for a single binding point. We use alphatization as a compiler pass to address two fundamental
issues: first, to eliminate the issue of variable conflation during program analysis, and second, to simplify
subsequent compiler passes.

Variable conflation can happen during program analysis, especially in monovariant analysis such as 0-CFA
when separate variables defined in different contexts are incorrectly assigned the same address. Alphatization
addresses this issue by creating a unique correspondence between each variable name and its defining site.
Consider the following example (Figure 11) where we rename the binding of variable a in both inner and
outer let expressions.

(let ([a 51)
(let ([a 101) a))

—a

(let ([a1222 ’5])
(let ([a1223 °10]) al1223))

Figure 11: Variable renaming example

This pass also establishes an invariant, a consistency that we rely upon in the later stages of the compiler,
which helps us avoid the possibility of unexpected program behavior and complicated debugging. Note that
the grammar of our language remains unchanged after this pass.

13

Example Following this pass, the factorial function becomes as below, see Figure 12.

(define (fact n)
(let ([zero13132 ’0])
(let ([one13133 ’1])
(if (= zero13132 n)
onel3133
(* n (fact (- n one13133)))))))

Figure 12: Factorial function after Alphatization

5.2.3 ANF Conversion

Within the ANF framework [47], sub-expressions are restricted to appear exclusively on the right-hand
side of a let-binding. By administratively binding each sub-expression to a unique identifier, it enforces an
explicit order of evaluation. As a result, ANF simplifies the continuation structure, leaving only one type of
continuation, namely the let-continuation. This simplification not only facilitates later compiler passes but is
convenient for constructing interpreters and program analysis.

ANF organizes expressions into two categories: atomic expressions (ae) and complex expressions (ce). Atomic
expressions are comprised of lambdas, datums, or variable references. We can evaluate them immediately
owing to their inherent properties of guaranteed termination and non-occurrence of side effects. In contrast,
all non-atomic expressions are classified as complex expressions within our language structure.

This transformation process is in fact manually CPS encoded, granting flexibility in terms of where the code
is inserted. It simplifies expression by lifting sub-expressions out and binding them explicitly with a let. This
implies that let becomes the singular mechanism allowing the execution of an arbitrary amount of work,
binding the return value to a variable, and then continuing to perform another arbitrary amount of work.
The following example (Figure 13) illustrates this mechanism effectively.

(let ([a 5]
[b 101)
(let ([c 151) c))

—?anf

(let ([al1224 °’5])
(let ([b1225 °10])
(let ([c1226 ’15]) c1226)))

Figure 13: Explicit let binding example

After this pass, only if and let forms contain more than one true sub-expression. if form contains an
atomic expression in the guard position and two complex expressions in the tail position, while let forms
extend the stack. Other forms such as primitive operations and function applications, only contain atomic
sub-expressions. Notably, this transformation also ensures that prim and apply-prim forms are bound within
a let, given that they do not extend the continuation. Following this pass, the context-free grammar of our
language evolves as below (see Figure 14):

Example The simplification of the factorial function shows, how this pass lifts out sub-expressions and
explicitly binds them with a let. Also notice the guard branch of if now contains an atomic expression, See
Figure 15.

14

(def) ::= (define ({var) (var)*) (ce))
(ce) ::
(ae))) (ce))

{ce))) (ce))

(prim (op) (ae)"))) (ce))
(apply-prim (op) (ae)))) (ce))

quote (datum))
lambda (var) (ce))
lambda ({var)*) (ce})

Figure 14: ANF IR

(define (fact n)
(let ([zero13132 °01]1)
(let ([onel13133 ’1]1)
(let ([a13232 (= zero13132 n)l)
(if a13232
onel3133
(let ([a13233 (- n onel3133)1)
(let ([a13234 (fact al13233)1])
(* n al13234))))))))

Figure 15: Factorial function after ANF conversion

15

5.2.4 CPS Conversion

CPS imposes a constraint on call sites to always be in the tail position, meaning that functions never return
in the conventional sense, and instead, a continuation is explicitly passed forward to be invoked on the return
point [31]. CPS is a powerful transformation phase for compiler optimization and program analysis, and it
is also possible to reconstruct a program back to its direct-style form with no loss of efficiency or analysis
results [32, 33].

For example, consider the arithmetic expression (* (+ 5 10) 20). Here, (+ 5 10) is evaluated first, but
the result is initially unknown. So, imagine the expression with a “placeholder” ([1) which will be filled
by that result, creating (* [1 20) as the future of the computation, or the continuation of the expression.
Once (+ 5 10) is evaluated to 15, we can invoke the continuation—(* 15 20)—by substituting 15 back
into the placeholder. Which we can then be evaluated to 300. At this point, there is no further computation
to be done; the continuation is empty, and we have our final result. The following Racket implementation
demonstrates the above example effectively in Figure 16.

;takes (lambda (x) x) as the continuation
(define (multiplication cont sum num)
(cont (* sum num)))

;takes multiplication as the continuation
(define (addition cont a b)
(cont (lambda (x) x) (+ a b) 20))

;makes the initial call
(addition multiplication 5 10) ;— 300

Figure 16: A CPS example

CPS is a source-to-source translation that implements the stack meaning that for Brouhaha this pass
implements all the continuations in terms of lambdas, but no lambda ever returns. Rather, every lambda at
its return point calls another continuation lambda to handle the return. Notice that CPS further simplifies
our grammar by binding all the expressions on the right side of a let, except for if and function applications.
if form now contains a variable reference or symbol in the guard position and two complex expressions in
the tail position, while function applications only have symbols as sub-expressions. Thus, following this
conversion, the context-free grammar of our languages changes as below (see Figure 17).

quote (datum))))

((ce))
(prim (op) (var)"))) (ce))
(apply-prim (op) (var)))) (ce))
(lambda (var) (ce)))) (ce)

(

)

)
lambda ({var)*) (ce)))) (ce})

Figure 17: CPS IR

16

Example Note the procedure kont13350 in Figure 18, is the continuation passed by the external caller of
the function fact. Similarly, operators — and * are also taking an extra continuation argument which they
will invoke at their return point. Hence, the factorial function becomes.

(define (fact kont13350 n)
(let ([zero13132 ’01)
(let ([one13133 ’1])
(let ([£13353
(lambda (a13232)
(if a13232
(kont13350 one13133)
(let ([£13352
(lambda
(a13233)
(let ([£f13351
(lambda
(al13234)
(* kont13350 n al13234))1])
(fact £13351 a13233)))1)
(- £13352 n onel13133))))1)
(= £13353 zero13132 n)))))

Figure 18: Factorial function after CPS conversion

5.2.5 Closure Conversion

Closure conversion is a program transformation technique that turns functions with free variables into a
structure called a closure—which consists of the function code and an environment capturing these variables
[34, 35, 128]. This process abstracts the function’s code to include an additional parameter for the environment,
replacing free variables with references to this environment. The resulting closure stays inactive until the
function is actually invoked with arguments [129].

For closure conversion, there are two major approaches: top-down (linked closures) and bottom-up (flat
closures). For Brouhaha we adopted the latter. Operationally, we compute free variables as we loop through
the CPS-converted code. Whenever we find a lambda, we compute its set of free variables, however, if we
find any lambda in the body of the lambda itself, then we compute its set of free variables first. After
that, we generate the relevant code to allocate the lambda’s environment, which effectively removes the free
variables with env-refs. So, overall, this pass eliminates all lambda abstractions and substitutes them with
make-closure and env-ref forms. This transformation actually converts the higher-order program, into a
list of first-order procedures whereas untagged-application and apply form become clo-app and clo-apply,
respectively. Hence the context-free grammar of our languages changes as below (see Figure 19).

Example Figure 20 shows the factorial function after the closure conversion phase.

5.2.6 Code Generation

The final pass is often code generation, where the program is typically compiled down to C or C++, and linked
with libraries for the target platform [34]. In Brouhaha, after closure conversion, the program is composed
exclusively of top-level procedures. The code generation phase takes this closure-converted code and translates
it into C++. In the runtime environment of the generated C++ code, functions do not directly accept arguments
in the conventional sense. Instead, the arguments are placed into a buffer by the calling function prior to
reaching the call site. The callee function then retrieves the argument count from the buffer’s initial position
and subsequently accesses each argument. The encoding scheme within the C++ code ensures that every
variable is of the void* type, with the least significant three bits of the pointer tagged to signify the datatype

17

(program) ::=

(proc ((var) (var)®) (ce)))
(ce) ::= (let)

) (quote (datumy)))) (ce))

) (prim (op) (var)”))) (ce))

var) (apply-prim (op) (var)))) (ce))
) (make-closure (var) (var)*)) (ce))

let (((var> (env-ref (var) (integer))) (ce))

if (var) (ce) (ce))

clo-apply (var) (var))
clo-app (var) (var)*)

Figure 19: Closure Converted IR

(proc
(lam2362 env2363 a2344)
(let ((kont2353 (env-ref env2363 3)))
(let ((* (env-ref env2363 2)))
(let ((n (env-ref env2363 1)))
(clo-app * kont2353 n a2344)))))
(proc
(lam2364 env2365 a2343)
(let ((kont2353 (env-ref env2365 4)))
(let ((* (env-ref env2365 3)))
(let ((fact (env-ref env2365 2)))
(let ((n (env-ref env2365 1)))
(let ((£f2354 (make-closure lam2362 n * kont2353)))
(clo-app fact £2354 a2343)))))))
(proc
(1am2366 env2367 a2342)
(let ((* (env-ref env2367 6)))
(let ((fact (env-ref env2367 5)))
(let ((n (env-ref env2367 4)))
(let ((- (env-ref env2367 3)))
(let ((one2337 (env-ref env2367 2)))
(let ((kont2353 (env-ref env2367 1)))
(if a2342
(clo-app kont2353 one2337)
(let ((£f2355 (make-closure lam2364 n fact * kont2353)))
(clo-app - £2355 n 0one2337))))))))))
(proc
(fact _2370 kont2353 n)
(let ((zero2336 ’0))
(let ((one2337 1))
(let ((f2356 (make-closure 1lam2366 kont2353 one2337 - n fact *)))
(clo-app = £2356 zero02336 n)))))

Figure 20: Factorial function after closure conversion

18

it represents. When accessing a variable, the pointer undergoes decoding to confirm its expected type, and
only then is the decoded pointer utilized to carry out the necessary operations. Furthermore, to accommodate
large integers and floating-point numbers, the program leverages the GNU Multi Precision (GMP) library.
The GMP types, MPZ for integers, and MPF for floats are integrated to support arithmetic operations on
numbers unrestricted by size and limited only by available memory.

In Brouhaha, memory management for the C++ code is managed by Boehm’s Garbage Collector, a conservative
approach to garbage collection. Memory allocation is performed using the GC_MALLOC function, and the
new(GC) operator is employed in place of the standard C++ new operator to ensure the garbage collector
manages the allocated memory. String handling is facilitated by the std::string class from the C++ standard
library, with language-specific string functions mapped directly to their std::string counterparts. Finally,
hash functions within the language are supported by a functional variant of the Hash Array Mapped Trie
(HAMT), providing efficient and effective hash operations.

Example The generated C++ code for the factorial function is given below. Note that, around 4000 lines of
built-in Brouhaha code is omitted for simplicity.

#include <stdio.h>
#include <string.h>
#include "gmp_func.h"

#include "../../prelude.hpp"
VAR
void *1am8714_fptr ()
{
numArgs = reinterpret_cast<long>(arg_buffer [0]) ;
void *env8715 = arg_buffer[1];
void *a8441 = arg_buffer[2];
void *kont8540 = (decode_clo(env8715)) [3];
void *_ud42 = (decode_clo(env8715)) [2];
void *n = (decode_clo(env8715)) [1];
arg_buffer [1] = reinterpret_cast<void *>(_u42);
arg_buffer [2] = kont8540;
arg_buffer [3] = n;
arg_buffer [4] = a8441;
arg_buffer [0] = reinterpret_cast<void *>(4);
auto function_ptr = reinterpret_cast<void (%) ()>((decode_clo(_u42))
(old;
function_ptr ();
return nullptr;
}

void *1am8714 = encode_clo(alloc_clo(lam8714_fptr, 0));
void *1am8716_fptr ()
{
numArgs = reinterpret_cast<long>(arg_buffer [0]);
void #*env8717 = arg_buffer[1];
void *a8440 = arg_buffer[2];
void *kont8540 = (decode_clo(env8717)) [4];
void *_u42 = (decode_clo(env8717)) [3];
void *fact = (decode_clo(env8717)) [2];
void *n = (decode_clo(env8717)) [1];

void #*%*clo8856 = alloc_clo(lam8714_fptr, 3);

19

}

clo8856 [1]
clo8856 [2]

n;
ud?2;

clo8856 [3] = kont8540;

void

*f8541 = encode_clo(clo8856) ;

arg_buffer [1] = reinterpret_cast<void *>(fact);
arg_buffer [2] = £8541;
arg_buffer [3] = a8440;

arg_buffer [0] = reinterpret_cast<void *>(3);
auto function_ptr = reinterpret_cast<void (x*) () >((decode_clo(fact))
[01);

function_ptr ();
return nullptr;

void *1am8716 = encode_clo(alloc_clo(lam8716_fptr, 0));
void *1am8718_fptr ()

{

numArgs = reinterpret_cast<long>(arg_buffer [0]);

void
void
void
void
void
void
void
void

bool
if (
{

3

else

xenv8719 = arg_buffer [1];

*aB8439 = arg_buffer [2];

*kont8540 = (decode_clo(env8719)) [6];
*one = (decode_clo(env8719)) [5];
*_ud42 = (decode_clo(env8719)) [4];
xfact = (decode_clo(env8719)) [3];

*n = (decode_clo(env8719)) [2];

*_ud45 = (decode_clo(env8719)) [1];

if _guard8857 is_true (a8439);

if_guard8857)

arg_buffer [1]

arg_buffer [2] one;

arg_buffer [0] reinterpret_cast<void *>(2);

auto function_ptr = reinterpret_cast<void (*) () >((decode_clo(
kont8540)) [0]);

reinterpret_cast<void *>(kont8540) ;

function_ptr ();
return nullptr;

{
void *#%*clo8859 = alloc_clo(lam8716_fptr, 4);

clo8859[1] = n;
clo8859[2] = fact;
clo8859[3] = _u42;

clo8859[4] = kont8540;
void *f8542 = encode_clo(clo8859);

arg_buffer [2] = apply_prim__ué45_2(n, one);

arg_buffer[1] = reinterpret_cast<void *>(£8542);
arg_buffer [0] = reinterpret_cast<void *>(2);
auto function_ptr = reinterpret_cast<void (*) () >((decode_clo(

£8542)) [0]);

20

function_ptr ();
return nullptr;

}
void *1am8718 = encode_clo(alloc_clo(lam8718_fptr, 0));
void *fact_fptr ()
{
numArgs = reinterpret_cast<long>(arg_buffer [0]);
void *_8722 = arg_buffer[1];
void *kont8540 = arg_buffer [2];
void *n = arg_buffer [3];
mpz_t *mpzvar8860 = (mpz_t *)(GC_MALLOC(sizeof (mpz_t)));
mpz_init_set_str (*mpzvar8860, "0", 10);
void #*zero = encode_mpz (mpzvar8860) ;
mpz_t *mpzvar8861 = (mpz_t *) (GC_MALLOC(sizeof (mpz_t)));
mpz_init_set_str (*mpzvar8861, "1", 10);
void #*one = encode_mpz (mpzvar8861);

void #*%*clo8863 = alloc_clo(lam8718_fptr, 6);

clo8863[1] = _u4d5;

clo8863[2] = n;
void *fact = encode_clo(alloc_clo(fact_fptr, 0));

clo8863[3] = fact;
clo8863[4] = _u42;
clo8863[5] = one;
clo8863[6] = kont8540;

void *f8543 = encode_clo(clo8863);

arg_buffer[1] = reinterpret_cast<void *>(_u61);
arg_buffer [2] = £8543;
arg_buffer [3] = zero;
arg_buffer [4] = n;
arg_buffer [0] = reinterpret_cast<void *>(4);
auto function_ptr = reinterpret_cast<void (*) () >((decode_clo(_u61))
[01);
function_ptr ();
return nullptr;
}
void *fact = encode_clo(alloc_clo(fact_fptr, 0));

/]

6 Abstract Interpretation

Abstract interpretation is a static analysis technique that approximates program behavior over abstract
domains. This technique has been extensively used in functional programming analyses and serves applications
such as proving program properties, bug detection, compiler optimization, and so on [36, 37, 38, 39]. One
approach to implementing this technique is to use abstract machines and interpreters, such as CE, CEK,
CESK, and CESK™ [39, 40, 41, 42, 43, 44]. These simplified models of computation and interpreters provide
the foundation for analyzing programs and a basis for further optimizations.

21

In this section, we first cover why we need abstract interpretation instead of concrete interpretation (Section
6.1), and its challenge and limitation (Section 6.3). Then in Section 6.4 we talk about abstracting abstract
machines. Finally, in Section 6.5 and Section 6.6 environment analysis and abstract counting are discussed.

6.1 Limitation of Concrete Interpretation

One may wonder why we even need abstract interpretation over concrete interpretation in program analysis.
The answer lies in the inherent limitations of the latter when faced with intricate programs that may include
loops, conditional branches, and function calls. Attempting to trace every possible program behavior in such
complex scenarios becomes an impractical endeavor.

(define (function num)
(function (+ num 1)))

Consider this simple recursive function above, invoking it with (function -2) initiates an infinite sequence:
-2, -1, 0, 1, 2, 3...00. This function continuously increments its input without an endpoint because it lacks
a terminating condition—a base case. The problem here is, that while we aim for sound reasoning about
our programs, the sheer complexity and infinite paths, as seen in this example, make concrete reasoning
nearly impossible, even for a small piece of code like this. Therefore, to analyze our programs thoroughly
and reliably, we must transcend beyond the concrete to embrace abstraction. Abstract interpretation offers
us a way to generalize program behavior without getting tangled in the details of every conceivable path,
especially those that stretch into infinity.

6.2 Abstract Interpretation and Galois Connection

In the study of abstract interpretation, the Galois Connection stands as a fundamental concept that sheds
light on the relationship between concrete and abstract domains. This relationship is characterized by two
mathematical structures known as complete lattices (is a poset such that (C;C LT UM)). The connection
comprises two crucial functions: the abstraction function («) and the concretization function (). The
abstraction function maps a detailed concrete state to its abstract representation, distilling complex systems
into essential generalizations. Conversely, the concretization function maps an abstract representation back
to its detailed concrete counterpart, enabling the examination of specific details as needed. The Galois
Connection’s significance lies in its ability to simplify the analysis of complex systems without compromising
the integrity of the representation. It offers a tractable approach to understanding systems by abstracting
away the specifics while maintaining a sound and precise correlation between the abstract and the concrete
domain. This dual functionality ensures that abstract interpretations are not just simplifications but are
closely tied to the concrete elements they represent.

N i - e ~
// \concretization/ \ N
y(a) -« L a N —— {pos} |
N _ J
[\ |' \ ~ (2)— 1 —
| | I W \/ 7
| . I | T X \ T
\ / \ | b (3) [\ ot
e __/ T *.\ {neg} =
\ \— alc) S l/;__ —-«— Q
\x ,./ abstraction \ / -
o= (A=) (1) (o)t tzerg |
Suchthat: Va€ A, c EC:alc)<a iff cC vl(a) LN N A AN N /S

Figure 21: Galois Connection in Abstract Interpretation

One of the core challenges of computer science is the problem of incompatibility. There are certain problems

22

and program behaviors that we simply cannot determine with certainty, like, no matter how powerful our
computers are. Abstract interpretation provides us with a way to navigate around this challenge. It does so
by approximating the meaning of programs rather than precisely calculating the exact answers. Operationally,
abstract interpretation works with abstract values and each abstract element represents a set of concrete
elements. For instance, rather than tracking every individual integer that a variable might take, the analysis
may group them into categories such as positive, negative, or zero (as shown in Figure 21). These categories,
or abstract elements, effectively represent an infinite set of possible concrete values, thereby making the
analysis of complex program behaviors manageable. In essence, the Galois Connection is the backbone of
abstract interpretation, ensuring that our abstractions are both meaningful and reliable.

6.3 Challenges and Limitations

While abstract interpretation is a powerful technique, it does come with its own set of challenges and
limitations. The choice of an abstract domain is crucial because if we choose a domain that is too coarse,
we might lose important details about the program’s behavior. On the other hand, if our domain is too
fine-grained, we might end up with an analysis that is too complex or time-consuming. During an analysis
performed, it is typically the case that an infinite, concrete space is compressed into some finite, abstract
space and it is inevitable, then, that some elements of the abstract domain represent multiple elements of the
concrete space (as shown in Figure 21). It is this overlapping in the abstract domain that leads to imprecision
in reasoning. For example, in Figure 21, we are representing all the positive integers with a single abstract
value pos, so, we are losing the distinction between numbers 1, 2, and 3. So, striking the right balance between
precision and efficiency is one of the fundamental trade-offs of abstract interpretation. If we aim for high
precision, the analysis might become too slow or computationally intensive to be practical. Conversely, if we
prioritize efficiency by using very coarse abstractions, we might overlook important details. Hence, finding
the sweet spot often requires expertise and iterative refinement.

6.4 Abstracting Abstract Machines (AAM)

Over the years abstract machines and interpreters such as CE, CEK, and CSEK [39, 40, 41, 42, 43] have been
extensively studied. They are first-order state transition system that represents the core of a real language
implementation [44] and are used to evaluate programs and determine their behavior. They follow a set of
rules to transition between different states based on the expressions and evaluation contexts in the program.
On the other hand, the goal of AAM is to craft a methodology that directly facilitates abstract interpretations
of abstract machines, through a process that converts an existing machine description into a variant that
computes a finite approximation of its behavior.

6.4.1 CEK Machine

The CEK [42] machine provides an operational model for evaluating lambda calculus expressions. It represents
the state of computation as a triple (as shown below, taken from [44]) consisting of a control string (the
expression being evaluated), an environment mapping variables to closures, and a continuation that captures
the rest of the computation or what to do next. The machine transitions by evaluating the expression in the
control string according to the standard A-calculus reduction rules, using the environment to look up variable
values and the continuation to push contexts as needed.

ceEX = FEzp x Env x Kont
ve Val = (Ax.e)
p € Env = Var —g, Val X Env

k € Kont :=mt | ar(e, p, k) | fn(v, p, k).

For example, looking up a variable returns its value from the environment, applying a function substitutes
the argument for the parameter in the function’s body after creating a closure for the function value and
environment, and pushing an argument or function onto the continuation models building up the context. The
ar and fn frames are part of the continuation states which represent the evaluation context for expressions.

23

The ar(e p’ k) is a continuation state that occurs during the argument evaluation phase. When an expression
is being evaluated and it reaches a point where the argument of a function needs to be evaluated, ar
captures the state of the machine at that point—this includes the expression for the argument e, the current
environment p’, and the continuation x to proceed after the argument is evaluated. Similarly, fn(v p k) is a
continuation state during function application. When a function is ready to be applied, fn captures the state
of the machine where v is the value that is the result of evaluating the function’s body, p is the environment
that should be used for the evaluation, and x represents the continuation for the rest of the computation
after the function application. Whereas mt means the evaluation context is empty.

The initial state for evaluating a closed expression simply includes the expression itself, an empty environment,
and an empty continuation. The meaning of a program is defined as the set of all reachable machine states
starting from the initial configuration. By modeling substitution and evaluation contexts, the CEK machine
provides an operational interpretation of lambda calculus evaluation.

S —rcEK S
(x, p, k) (v, p', k) where p(z) = (v, ')
<(6061)7p7 K> <607p7ar(elapa ‘V‘:)>
<’U7p7ar(eﬂ pl7 F;/)> <e7pl7 fn(/vﬂ p’ K./)>
(v, p,fn((\x.e), p', K)) (e,p'[z = (v, p)], k)

Figure 22: The CEK machine [44].

In semantic-based program analysis, the intensional properties of the machine are of interest, which refers to
the set of all possible states the machine could reach during the evaluation of a program. However, due to
the halting problem, it is not feasible to determine all reachable states for every program. AAM addresses
this challenge by constructing an approximation of the CEK machine. This approximation is achieved by
defining an abstract state transition relation and an abstraction map, which aims to provide a computable
and sound method to infer the program’s behavior without executing it in its entirety. However, this method
encounters a problem because environments and continuations in the CEK machine are recursive, leading
to an abstract state space that is potentially infinite. To manage such an infinite state space, a widening
operator is required, but finding a suitable widening operator for this scenario is challenging. One way to
tackle the recursive structures involves introducing a level of indirection—using explicitly allocated addresses
to manage recursion within the machine’s state space. This strategy effectively decouples the program’s
recursion from the state-space recursion and the CESK machine is one step toward addressing this issue
which removes recursion from the environment component of the CEK machine.

6.4.2 CESK Machine

The CESK [43] machine is an extension of the CEK machine. Similar to the CEK machine, it represents the
state (as shown below, taken from [44]) using a control string, environment, and continuation. Additionally,
it introduces a store component that holds variable bindings, eliminating the mutual recursion between
environments and closures. The environment maps variables to addresses rather than directly to values, and
the store then maps these addresses to storable values. This modification allows the machine to look up a
variable’s value through its address, providing a more flexible and dynamic handling of variable bindings.

ceEX = FExp x Env x Store x Kont
p € Env = Var —g, Addr
o € Store = Addr —g, Storable
s € Storable = Val x Env
a,b,c € Addr an infinite set.

The initial state for evaluating a closed expression simply includes the expression itself, an empty environment,
an empty store, and an empty continuation. The machine evaluates the control string using the environment

24

and continuation as in the CEK machine. However, instead of mapping variables directly to values, the
environment maps variables to addresses in the store. Looking up a variable fetches the closure (value,
environment pair) from the store location corresponding to the variable’s address. When binding a variable,
it allocates a fresh address and stores the closure there.

!
S ——2CESK S

(,p,0,K) (v,p',0, k) where o(p(z)) = (v,)
(Ceger), p, o, K) (eo, p,0,ar(e1, p,K))
(v.p,0,ar(e, o', K)) (e,p';0.M(v, p, k))
(v,p,o,fn((Ax.e),p', K)) (e, p'[x — al,ola— (v,p)], k)

where a ¢ dom(a)

Figure 23: The CESK machine [44].

The key advantage of the CESK machine is that environments and closures are no longer mutually recursive.
However, continuations remain recursively structured. Simply abstracting continuations as unordered sets
would compromise return-flow analysis. AAM addresses this issue by turning the CESK machine into a
CESK* machine, which redirects the recursive structure through the store, similar to environments.

6.4.3 CESK* Machine

The CESK* [44] machine is a variant of the CESK machine that uses store-allocated continuations, a pivotal
tool in the static analysis of higher-order languages derived from A-calculus. It eliminates the remaining
recursive structure in the CESK machine associated with continuations. The adaptability of Abstract CESK*
lies in its capacity to let analysts adjust its precision and polyvariance by altering the tick and alloc functions
integral to the analysis [130]. In the CESK* machine, continuations are no longer represented directly.
Instead, the state (as shown below, taken from [44]) contains a pointer to the current continuation allocated
in the store. The store component maps addresses to storable values consisting of closures or continuations.

sEX = FEzp x Env x Store x Addr
s € Storable = Val x Env + Kont
k€ Kont ==mt |ar(e, p,a) | fn(v, p,a).

Looking up a variable or applying a function proceeds similarly to the CESK machine, but now indirectly
through the store when accessing or updating continuations. For example, applying a function allocates a fn
continuation in the store and updates the pointer. This refactoring serves the same purpose as the CESK
store—providing indirection to eliminate recursion. In this case, the mutual recursion between continuations
and evaluation contexts is removed. With both environments and continuations allocated in the store, the
CESK* machine enables abstract interpretation by bounding just the store. Approximating the potentially
unbounded store contents yields a finite-state abstract machine that soundly approximates the original
CESK semantics. The initial machine configuration pairs the expression with an empty environment, a store
containing just the mt continuation, and a pointer to that continuation.

6.5 Environment Analysis

Environment analysis [46, 131] is based on k-CFA and a response to K-CFA’s limitation we highlighted
in Section 4.3.2. It allows a compiler to reason about the equivalence of environments, i.e., name-to-
value mappings, that arise during a program’s execution. Whereas, a binding—the atomic unit of the
environment—is an individual mapping from one name to one value. Focusing on bindings, the key aspect of
environment analysis is discerning when the equivalence of two abstract bindings implies the equivalence of
the corresponding concrete bindings. Consider the below example again, if we invoke this with (function 0),
then the longer this code runs, the more environment it creates (e.g., [z — 0], [z — 1]... [z — 19279] ... c0).

25

S ——cmsk: S, where k = o(a),b = alloc(s), u = tick(q)

<x7p7 g,a, t> <U7p/a a,a,u) where (U7p/) = O'(p(l‘)
<(€0€1),p,0,a,t> <€07p70[b'—>ar(61,p, a’)]abvu>
(v,p,0,a,t)

if & = ar(c, p,c) (e, p, b (v, p,o)], b,)
if & = fn(Oz.e), o', ¢) (e, p'lx = B, olb = (v, p)], ;)

Figure 24: The time-stamped CESK* machine [44].

(define (function num)
(function (+ num 1)))

Environment analysis tries to evaluate the correlations between these different environments and cautiously
determines which bindings in any pair of environments are guaranteed to be identical. Operationally, given a
pair of environments p; and ps that assign values to variables, the aim of environment analysis is to estimate
the collection of variables for which p; and py have matching assignments.

{v:p1(v) = pa(v)}

The technique environment analysis uses to prove this property is called Abstract Counting, which we briefly
cover next.

6.6 Abstract Counting

Abstract counting [46] is a mechanism for performing environment analysis through abstract interpretation
techniques such as k-CFA. While performing the analysis it tracks the allocation frequency of an abstract
resource. When the count stands at one, it indicates that, for the time being, the abstract resource correlates
with a single concrete resource. This correlation facilitates the process of environment analysis and broadens
the scope of optimizations that the compiler can apply, not just in quantity but in variety as well. The main
objective is to identify singleton sets based on the analogy that if two such sets, A and B, are equivalent
and each contains only one element, then they are identical in both the abstract and concrete domains. An
analysis builds a map (Galois Connection) between abstract and concrete addresses and abstract counting is
an approximation of this map. The process of analysis, therefore, is the modeling of program properties, and
abstract counting serves as a model for the properties of the analysis itself. It encapsulates an abstraction of
the number of concrete values that an abstract value might represent. Operationally, the allocation scheme
for abstract addresses plays a pivotal role in this process. When multiple concrete addresses are mapped to a
singular abstract address, the count corresponding to that abstract address is incremented. A newly allocated
abstract address is initially treated as though it were concrete, assuming a one-to-one correspondence until it
is reallocated.

7 Implementation Approaches For Reasoning Systems

Reasoning systems are designed to simulate the human ability to reason or make inferences based on given
information or assumptions. By processing and analyzing a set of rules and data, these systems draw logical
conclusions, a capability crucial in domains where complex and rule-intensive information is prevalent. They
mechanize different forms of reasoning, particularly deductive reasoning as found in mathematics and formal
logic, including propositional and predicate logic [132]. This functionality allows reasoning systems to handle
tasks ranging from simple classification to intricate problem-solving. The primary function of these systems is
to uncover new insights from a knowledge base (KB), determining what additional knowledge logically follows
from existing information and thus enhancing decision-making capabilities through logical inference [133].

26

Implementation approaches vary depending on the type of logic, knowledge representation, inference method,
and search strategy used. Some of the common and prominent approaches are Rule-based reasoning, Logic-
based reasoning, Probabilistic reasoning, and Non-monotonic reasoning. Each approach has advantages and
disadvantages, and the best approach depends on the characteristics and requirements of the domain and the
problem to be solved.

In this section, we will briefly review some of the key approaches in reasoning systems, such as Interprocedural
Program Analysis (IPA), Satisfiability Problem (SAT), and Datalog. Notably, our examination will predomi-
nantly focus on Datalog, as it offers pertinent insights and methodologies that are particularly relevant to the
scope of our survey and research directions.

7.1 Interprocedural Program Analysis (IPA)

The interprocedural analysis focuses on evaluating a program encompassing multiple procedures, with a
particular emphasis on understanding how information is exchanged and flows between these procedures [134].
IPA can be performed using various program analysis techniques, such as data-flow analysis, control-flow
analysis, abstract interpretation, may-alias analysis, etc [135, 136, 137, 138, 139, 140, 141]. A compiler then
uses this analysis result to understand the behavior of all procedures in a program and applies this knowledge to
optimize individual procedures [142]. On the other hand, intraprocedural analysis is a mechanism that targets
optimization within each function of a compilation unit, relying solely on the information available for that
specific function and compilation unit [143]. At compile time, optimization is often done by employing a dual
approach, incorporating both intraprocedural analysis and interprocedural analysis. While intraprocedural
analysis focuses on optimizing individual functions within their scope, interprocedural analysis broadens
this scope, performing optimizations across the entire program. This comprehensive approach leverages
techniques including but not limited to inlining, program partitioning, dead-code elimination, and constant
propagation [143, 144]. These optimizations are geared towards enhancing performance by reducing overhead,
improving data locality, and streamlining the program’s flow.

Despite the advantages, performing IPA is a complex task as it requires the compiler to understand not only
the code it is currently compiling but also the effects of every procedure throughout the entire program,
including those compiled at different times [145]. Not all applications equally benefit from IPA optimizations,
and the extent of performance gains varies [143]. Applications with numerous functions, multiple compilation
units, and those where functions are not in the same compilation unit as their callers are more likely to
see improvements from IPA. Additionally, applications with fewer input and output operations generally
exhibit more noticeable performance enhancements. However, the degree of performance improvement is
contingent on the application type, and in some instances, the use of interprocedural analysis might even lead
to performance degradation [143]. Therefore, debugging and thoroughly assessing programs before applying
IPA is crucial to ensure that the optimizations align well with the program’s requirements and characteristics.

7.2 SAT

Satisfiability, commonly known as SAT, is a principle in logic that deals with determining whether a logical
formula or a set of formulas, can be deemed satisfiable. In simpler terms, it means checking if there is a
way to assign truth values to the variables in these formulas so that the entire formula holds true [146].
Algorithms or tools designed to perform this task are known as SAT solvers, and they play a pivotal role
in figuring out the satisfiability status of given logical statements. SAT solvers have found applications in
various fields including computer science, computer engineering, graph theory, logic, and operations research
[146]. Their utility shines in addressing complex issues that can be framed as SAT problems. SAT solvers
offer a universal framework for problem-solving, converting various problem types into SAT problems. This
adaptability is strengthened by the extensive mathematical tools and techniques developed for logic and
proof theory. The study of SAT algorithms has been an active area of research for over six decades and
some of the prominent algorithms are DPLL, MiniSat, Max-SAT, Chaff, CryptoMiniSAT, and ProbSAT,
GRASP [147, 148, 149, 150, 151, 152, 153].

Nonetheless, SAT solvers are not without their challenges. A notable drawback is the exponential worst-case
complexity associated with SAT problems making some SAT problem instances practically unsolvable with

27

current computational means. Moreover, SAT solvers may falter when dealing with problems that involve
real-world constraints or intricate dependencies. Their effectiveness is also contingent on the accuracy and
completeness of how a problem is represented logically, which can be a demanding task in some scenarios.
Thus, while SAT solvers are formidable tools capable of addressing a wide array of problems, their efficiency
is inherently dependent on the specific nature and complexity of the problem at hand.

7.3 Datalog

Datalog is a logic programming-based database query language [154]. A Datalog program combines a set
of specific predicates, known as the extensional database (EDB), with a series of Horn clauses, forming the
intensional database (IDB) [155]. In the context of program analysis, Datalog simplifies the implementation
of analysis techniques in an intuitive way [156, 157]. Analysis techniques, including data-flow, control-flow,
and pointer analysis, inherently involve recursion, making Datalog, with its strong recursive capabilities, an
ideal choice for performing such tasks[158]. For instance, data-flow analysis can be expressed in a few lines
of code written in Datalog, but performing the same analysis can take hundreds to thousands of lines in a
traditional language [156].

Consider a datalog example (Figure 25), where we define a directed graph containing nodes nl to n5, then we
will query to find out all the nodes that are reachable from a particular node. The graph is constructed using
edge/2 facts—edge is the name of the predicate and 2 indicates that the predicate takes two arguments—
representing directed edges between nodes (nl to n5). The graph also includes a loop from n4 back to nl.
The reachable/2 predicate is defined with two rules: The first states that a node Y is reachable from another
node X if there is a direct edge from X to Y. The second, recursive rule states that Y is reachable from X if
there exists an intermediate node Z such that Z is reachable from X, and there is a direct edge from Z to Y.
Now if we query which nodes are reachable from n1, the Datalog engine uses these rules to recursively explore
the graph, concluding that n2,n3, and n4 are reachable from nl, while n5 remains unreachable because there
is no edge leading to nb from any of nl,n2,n3, or n4.

% Facts % Rules

edge(nl,n2). reachable(X,Y) - edge(X,Y).

edge(n2,n3). reachable(X,Y) - edge(X, Z), reachable(Z,Y).
edge(n3,n4).

edge(nd,nl). % Query

edge(nb,n4d). ?- reachable(nl,Y).

Figure 25: A datalog example: EDB (left), IDB (right), and Query (right-bottom)

In the 1980s and early 1990s, Datalog attained considerable attention within the database community,
primarily due to its potential in various systems applications. Despite this initial interest, the language
eventually entered a period of inactivity, partly because it did not find immediate, widespread practical
use [159]. However, Datalog has recently experienced a revival, now playing a critical role in numerous
contemporary application areas. This resurgence is especially noticeable in fields such as data integration,
networking, security, cloud computing, and program analysis [45, 160, 161, 162, 163, 164]. A key factor in
this renewed interest is Datalog’s ability to serve as a high-level language for efficiently querying both graphs
and relational structures. Its capabilities in executing recursive queries and maintaining views incrementally
are noteworthy, as they leverage the relational model’s strength for structured formal reasoning and analysis.
Datalog’s adaptability enables customization to meet diverse application-specific needs. Its core is often
enhanced and modified across various fields, reflecting its evolving role and growing importance in today’s
computational landscape. This versatility cements Datalog’s status as a crucial tool in data processing and
analysis [158].

The remaining part of this section aims to delve into the contemporary landscape of Datalog and its modern

28

adaptations, particularly focusing on Soufflé [165], Slog [45], Flix [166], Datafun [167], IncA [168], and Ascent
[169]. It also aims to provide a holistic view of the capabilities and limitations of each system, offering insights
into their suitability for various computational tasks and environments. Finally, Section 7.3.7 shows how our
prototype compiler is getting informed by the slog-based analysis in order to perform various optimizations.

7.3.1 Souflié

Soufflé [165] is a state-of-the-art open-source Datalog system focused on scalability and used primarily for
program analysis tasks. It achieves performance through the compilation of Datalog to parallel C++ code [170].
It utilizes domain-specific optimizations including a novel polynomial-time algorithm inspired by Dilworth’s
theorem to construct an optimal minimal set of B-tree indexes that cover all necessary access patterns. It
further optimizes the compiled program through template metaprogramming techniques that specialize data
structures and algorithms at compile-time. To handle concurrent operations, Soufflé implements specialized
lock-free concurrent data structures rather than relying on generic libraries. A key data structure is a variant
of concurrent B-trees employing fine-grained optimistic read/write locking to separate read and write paths
during semi-naive evaluation. The paper [165] provides an overview of Soufflé’s architecture and staged
compilation process translating Datalog to a relational algebra machine, then to specialized C++. However, it
does not detail the specifics of Souffié’s semi-naive evaluation implementation. A case study shows Soufflé
scaling to analyze the large OpenJDK codebase orders of magnitude faster than existing Datalog engines,
demonstrating its viability for large-scale program analysis. One of Soufflé’s strengths is the configurability
and ability to rapidly prototype custom program analyzers that approach hand-optimized tools’ performance
levels. Although Souflié’s performance is impressive with a low thread count, it faces challenges in scaling
efficiently due to internal locking mechanisms and its reliance on coarse-grained parallelism [45, 171].

7.3.2 Flix

Flix [166] is a declarative language for specifying and solving least fixed point problems, particularly static
program analyses. It takes inspiration from Datalog and extends it with support for lattices and monotone
functions. In Flix, users can define lattices like constant propagation, intervals, etc to represent abstract
domains. They can also specify monotone functions over these lattices to implement transfer functions. This
allows Flix to express a broader range of static analyses than pure Datalog while retaining Datalog’s familiar
rule-based syntax. The semantics of Flix builds on Datalog by associating predicates with lattices, extending
the Herbrand universe with lattice elements, and defining lattice operations like joins. This provides a clean
model-theoretic semantics that captures the meaning of Flix programs. Flix ensures programs have a unique
minimal model that can be computed using semi-naive evaluation. The key capabilities of Flix include (a)
support for user-defined lattices and monotone functions, (b) integration of a pure functional language to
specify lattices and functions, and (c) compatibility of analyses like in Datalog.

Compared to other Datalog systems, Flix allows a wider range of static analyses to be expressed and
implemented effectively. The use of lattices avoids the need to encode them in relations which can be
inefficient. Flix programs also interoperate well with existing Java code, unlike many Datalog solvers.
Recently [172] Flix added the support for embedding logic programs as first-class values in a functional
programming language. However, Flix does have certain limitations. It does not provide support for negation
and non-monotonic reasoning. Additionally, it lacks a strong emphasis on efficient compilation [45], and it
does not allow expressions in argument positions or enable pattern matching within rules [169].

7.3.3 Datafun

Datafun [167] is a typed functional programming language that allows programming in a style similar to
Datalog, while also supporting higher-order functions. It tracks monotonicity in its type system, which allows
taking the least fixed points of monotone functions in a safe and terminating manner. Datafun employs
a top-down evaluation strategy rooted in the A-calculus and its two major capabilities beyond standard
Datalog are Higher-order functions and Expressivity. Datafun allows defining higher-order monotone and
non-monotone functions, and using these functions in fixed point computations. This makes it easy to abstract
common patterns like generic transitive closure. Datalog is limited to first-order predicate definitions while

29

Datafun can define arbitrary monotone functions on posets and semilattices. Datalog is limited to predicates
on finite sets of ground terms. Datafun’s approach lets programs compute with the data they operate on. The
key idea in Datafun is to track monotonicity information in the type system. By distinguishing monotone
and non-monotone functions and requiring fixed point bodies to be monotone, the language guarantees
termination. The denotational semantics models types as posets and uses adjunctions between posets, sets,
and semilattices. Recent research has explored its semi-naive evaluation in connection with the incremental
A-calculus [173, 174].

While Datafun advances Datalog capabilities, there are still limitations. It does not yet have optimization tech-
niques like the magic sets algorithm that make Datalog implementations efficient. In future implementations,
the authors also aim to add support for the general recursion to the language.

7.3.4 IncA

IncA [168] is a domain-specific language (DSL) language. It allows developers to define incremental program
analyses that efficiently update results as code changes. It works by representing computations as graph
patterns on the abstract syntax tree (AST) of the analyzed program. Its compiler translates user-defined
analyses into interconnected graph patterns and turns regular pattern functions into graph patterns. Whereas
the runtime system then incrementally maintains the analysis results using incremental graph pattern-matching
algorithms when code changes occur.

Compared to directly using graph patterns, IncA aims to make incremental program analysis more accessible
by providing pattern functions as an abstraction. Pattern functions take a single input, operate in a linear
fashion similar to forward or backward analyses, and hide the complexities of sets and graph operations.
To optimize performance, the IncA compiler analyzes the pattern functions to determine which AST nodes
are relevant for the analysis. This allows pruning irrelevant change notifications and reducing caching
during incremental reevaluation. The authors demonstrate the capabilities of IncA by implementing control
flow analysis, points-to analysis, well-formedness checks for C programs, and FindBugs checks for Java.
Measurements show that incremental analyses provide significant speedups over reanalyzing from scratch
after changes. Contrary to the general incremental computation systems like i3QL or Adapton, IncA focuses
specifically on incremental program analysis rather than arbitrary computations. The domain-specific
assumptions allow additional optimizations like static analysis of the pattern functions. In the future, the
authors plan to extend IncA to support additional kinds of program analyses by generating incremental
runtime data representations.

7.3.5 Ascent

Ascent [169] is a logic programming language that extends Datalog, embedded in Rust via procedural macros.
It allows writing declarative rules that can perform deductive inference and compute fixed points over lattices.
Ascent rules can seamlessly call Rust functions and vice versa, enabling integration of logic programming
with application code. The key capabilities of Ascent include support for user-defined types and pattern
matching, allowing logic programs to directly operate over complex data. It utilizes Rust’s trait system to
enable fixed point computations over non-powerset lattices, such as computing shortest paths in graphs.
Common aggregators including but not limited to min, max, sum, etc. are provided in the library and can be
user-extended. Ascent performs optimal index selection and semi-naive evaluation for efficient deduction.
Ultimately the rules compile to high-performance Rust code.

Compared to Datalog systems like Souffle and Flix, Ascent aims for tighter integration with a host language
to avoid serialization costs. It matches Souffle’s performance on benchmarks while requiring far less code than
Datafrog [175] (A lightweight Datalog engine in Rust). By compiling to native code, Ascent achieves orders
of magnitude speedups over Flix. The authors evaluate Ascent by reimplementing Polonius, the Rust borrow
checker, in half the lines of code. Ascent matches its performance, demonstrating viability for large real-world
analyses. Experiments on shortest path computation and graph mining show Ascent is highly performant
compared to Flix and competitive with Soufflé. However, Ascent lacks capabilities for parallel evaluation,
proving termination by tracking monotonicity and combining programs functionally like later Flix versions.

30

7.3.6 Slog

Slog [45] is a deductive logic programming language that extends Datalog to support structured, recursive
facts and higher-order relations. Slog’s key innovation is allowing subfacts—facts nested within other facts—to
be first-class citizens just like top-level facts. This means subfacts can trigger rules, be recursively nested,
and be referenced as values by other facts. To implement this, Slog interns every structurally unique fact and
subfact, assigning it a unique ID. Rules can then match on subfacts and generate new (sub)facts in response.
This simple extension enables Slog to naturally represent structured data like abstract syntax trees as nested
facts. It also allows higher-order relations through defunctionalization. For example, a rule can look up a
value for variable z in a global environment relation, providing the enclosing environment fact. Slog compiles
to parallel relational algebra, distributing computation across facts and subfacts uniformly.

Compared to other datalog-like systems such as Soufflé and RadLog, Slog demonstrates better scaling and
performance in benchmarks. By treating subfacts as first-class, Slog avoids representing trees of facts as flat
relations like Souffle does with abstract data types. This allows direct access and indexing of structured
values instead of materializing large unwieldy intermediate relations. The MPI-based parallel backend also
shows better scaling than Spark-based systems like RadLog [176]. While inspired by Datalog, Slog is a fully
featured language for data-parallel structured deduction. Slog’s implementation contains a compiler, runtime,
and REPL totaling over 20K lines of code and its application includes but is not limited to more direct
implementations of abstract machines (CEK, Krivine’s, CESK), rich program analyses (k-CFA, m-CFA), and
type systems.

7.3.7 Slog-Based Analysis

The Brouhaha is a whole-program compiler, and its performance significantly improves by the analysis that
we perform using Slog. Slog is a deductive logic programming language and it allows us to write abstract
machines in a very intuitive way. For Brouhaha we adopted the CESK* [44] abstract machine to perform
whole-program analysis and the goal of this analysis is to provide us with sound and useful information that
can inform the compilation process.

We sent the output of Alphatizations pass to Slog, where we turn the s-expressions into recognizable facts
within the Slog framework. This conversion is achieved by uniquely tagging each Brouhaha form to correspond
to a specific fact in Slog. The code that facilitates this conversion process is handled in the file named
emit-slog.rkt. To generate the control-flow graph, the rules are structured within an evaluate, return, and
apply framework to bring clarity and order to the CFA’s architecture. During the analysis, any control
expression initially enters an evaluate phase, marked by an eval tag, along with its associated environment
and continuation. This phase is designed to yield a value, which is then stored along with its address for
subsequent processing in the return phase, indicated by a ret tag.

The return state resumes the evaluation based on the directions specified by the continuation, which is
typically modified during the evaluate phase. When a function or lambda application is directed to a return
state, the process transitions to the apply state. Apply state handles both variadic and fixed parameter
scenarios, ensuring that parameters and arguments are bound correctly. Finally, the results of the analysis are
encapsulated in answer tagged facts, which include the addresses and corresponding values of the outputs.

Upon finishing the analysis, the compiler writes all the generated facts into a text file named fact.txt and
continues the compilation process. Finally, in the code generation phase, whenever we are at a call site, the
compiler introspects on the facts from the fact.tzt file, to perform various kinds of optimization. For example,
one of the optimizations that the compiler does is, before emitting C++, it looks up the facts to determine if
the function being called is one of the built-in Brouahaha functions with a specific number of arguments or
not. If this is the case, instead of emitting C++ using the global arg-buffer array, which is often slower, it
directly makes a call to the built-in Brouhaha function. By doing so, the compiler avoids the usage of the
arg-buffer and ensures that any C++ compiler then can inline the function call to reduce the compilation time.

31

8 Future Research Direction

Functional program analysis is a vast research field and analysis techniques such as control-flow analysis, and
program transformation have been active research areas for many decades. In this survey, we specifically
focused on functional compilers and analysis techniques such as abstract interpretation. As part of our
ongoing research, we have demonstrated how our prototype compiler works and how we are using Slog to
perform analyses to address novel research problems and optimize the compiler’s performance.

In the future, we aim to delve into making our analysis more precise and performing many more flow-
directed optimizations to the compiler. For example, turning our current monovariant analysis (0-CFA)
into a polyvariant analysis (k-CFA) would certainly allow us to make better decisions in terms of call-site
optimization. We also aim to address novel research problems such as abstract counting for dalalog-like
languages. One of the other optimizations that we are especially interested in is implementing super-beta
inlining mentioned in Mights’ dissertation [131].

9 Conclusion

This survey paper has provided a comprehensive overview of functional compilation and functional program
analysis covering essential topics such as A-calculus, compiler construction, and abstract interpretation. It
also covered the latest developments in the field and discussed the significance of abstract machines and
interpreters. In Section 3 we provided a brief introduction to functional programming, lambda calculus, and
FP concepts. Then in Section 4 we discussed functional program analysis and some of its methodologies. In
Section 5, we introduced a functional language and demonstrated how our prototype functional compiler works
for that language. Moving forward, in Section 6, we covered abstract interpretation and abstract machines.
Then, Section 7?7 talked about modern Datalog languages, and compared them in terms of performance and
how we are performing program analysis using a Datalog-like language—Slog. Finally, Section 8 then outlined
our future research direction.

32

References

[1]

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of Computer
Programs. The MIT Press, Cambridge, MA, 2 edition, 1996.

Paul Hudak. Conception, evolution, and application of functional programming languages. ACM
Comput. Surv., 21(3):359-411, sep 1989.

John Hughes. Why functional programming matters. The computer journal, 32(2):98-107, 1989.

Zhenjiang Hu, John Hughes, and Meng Wang. How functional programming mattered. National Science
Review, 2(3):349-370, 07 2015.

Patrick Thomson, Rob Rix, Nicolas Wu, and Tom Schrijvers. Fusing industry and academia at github
(experience report). Proc. ACM Program. Lang., 6(ICFP), aug 2022.

Abdullah Khanfor and Ye Yang. An overview of practical impacts of functional programming. 2017
24th Asia-Pacific Software Engineering Conference Workshops (APSECW), pages 50-54, 2017.

Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph H. Fasel,
Maria M. Guzmén, Kevin Hammond, John Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S.
Nikhil, Will Partain, and John Peterson. Report on the programming language haskell: a non-strict,
purely functional language version 1.2. ACM SIGPLAN Notices, 27:1—, 1992.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML. MIT Press, Cambridge,
MA, USA, 1997.

Gerald Sussman and Guy Steele. Scheme: A interpreter for extended lambda calculus. Higher-Order
and Symbolic Computation, 11:405-439, 12 1998.

Rich Hickey. The clojure programming language. In Proceedings of the 2008 Symposium on Dynamic
Languages, DLS 08, New York, NY, USA, 2008. Association for Computing Machinery.

D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In Proc. of a
Conference on Functional Programming Languages and Computer Architecture, page 1-16, Berlin,
Heidelberg, 1985. Springer-Verlag.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sean McDirmid, Stéphane Micheloud,
Nikolay L. Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview of the scala
programming language second edition. 2006.

Pierre-Yves Saumont. Functional Programming in Java. Manning Publications, 2017.
Ivan Cukié¢. Functional Programming in C++. Manning Publications, 2018.
Richard Bird. Introduction to Functional Programming. Prentice Hall, London, 1998.

Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 92, page 1-14, New York, NY,
USA, 1992. Association for Computing Machinery.

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’93, page
71-84, New York, NY, USA, 1993. Association for Computing Machinery.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3):348-375, 1978.

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings of the
9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’82, page
207-212, New York, NY, USA, 1982. Association for Computing Machinery.

33

[20]

[39]

[40]

Neil D. Jones. Flow analysis of lambda expressions (preliminary version). In Proceedings of the
8th Colloguium on Automata, Languages and Programming, page 114-128, Berlin, Heidelberg, 1981.
Springer-Verlag.

Neil D. Jones. Flow analysis of lambda expressions. In Shimon Even and Oded Kariv, editors, Automata,
Languages and Programming, pages 114—128, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis. Springer
Publishing Company, Incorporated, 2010.

O. Shivers. Control flow analysis in scheme. In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI ’88, page 164-174, New York, NY, USA,
1988. Association for Computing Machinery.

Olin Grigsby Shivers. Control-flow analysis of higher-order languages or taming lambda. Carnegie
Mellon University, 1991.

Alexander Augusteijn. Functional programming, program transformations and compiler construction.
1993.

Simon L. Peyton Jones. The Implementation of Functional Programming Languages (Prentice-Hall
International Series in Computer Science). Prentice-Hall, Inc., USA, 1987.

ALONZO CHURCH. The Calculi of Lambda Conversion. (AM-6). Princeton University Press, 1941.

SL Peyton Jones, K Hammond, WD Partain, PL. Wadler, CV Hall, and Simon Peyton Jones. The
glasgow haskell compiler: a technical overview. In Proceedings of Joint Framework for Information
Technology Technical Conference, Keele, pages 249-257. DTI/SERC, March 1993.

Simon Marlow and Simon L. Peyton Jones. The glasgow haskell compiler. 2012.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling with
continuations. SIGPLAN Not., 28(6):237-247, jun 1993.

G.D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science, 1(2):125-
159, 1975.

Andrew W Appel. Compiling with continuations. Cambridge university press, 2007.

Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP 07, page 177-190, New York, NY, USA,
2007. Association for Computing Machinery.

Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.

A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, page 293-302,
New York, NY, USA, 1989. Association for Computing Machinery.

P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proceedings of
the Second International Symposium on Programming, pages 106-130. Dunod, Paris, France, 1976.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. pages 238-252, 01 1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In Proceedings
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL *79,
page 269282, New York, NY, USA, 1979. Association for Computing Machinery.

Jan Midtgaard. Control-flow analysis of functional programs. ACM Computing Surveys - CSUR,
44:1-33, 06 2012.

Peter J. Landin. The mechanical evaluation of expressions. Comput. J., 6:308-320, 1964.

34

[63]

Jan Midtgaard and Thomas Jensen. A calculational approach to control-flow analysis by abstract
interpretation. In Maria Alpuente and Germén Vidal, editors, Static Analysis, pages 347-362, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

Matthias Felleisen and Daniel P. Friedman. Control operators, the secd-machine, and the A-calculus.
In Formal Description of Programming Concepts, 1987.

Matthias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-order languages. In
ACM-SIGACT Symposium on Principles of Programming Languages, 1987.

David Van Horn and Matthew Might. Abstracting abstract machines. SIGPLAN Not., 45(9):51-62,
sep 2010.

Thomas Gilray, Arash Sahebolamri, Sidharth Kumar, and Kristopher Micinski. Higher-order, data-
parallel structured deduction, 2022.

Matthew Might and Olin Shivers. Improving flow analyses via I'cfa: Abstract garbage collection and
counting. SIGPLAN Not., 41(9):13-25, sep 2006.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling with
continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language
Design and Implementation, PLDI ’93, page 237-247, New York, NY, USA, 1993. Association for
Computing Machinery.

Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml: Functional programming
for the masses. 7 O’Reilly Media, Inc.”, 2013.

Yaron Minsky. Ocaml for the masses. Communications of the ACM, 54(11):53-58, 2011.
GL Steele. Common lisp: The language. bedford, 1984.
Peter Seibel. Practical common lisp. Apress, 2006.

Joe Armstrong. Programming erlang: software for a concurrent world. Programming Erlang, pages
1-548, 2013.

Michael R Hansen and Hans Rischel. Functional programming using F. Cambridge University Press,
2013.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How to design
programs: An introduction to programming and computing. Education Review, Jun. 2015.

David Mertz. Text Processing with Python. Addison-Wesley Longman Publishing Co., Inc., USA, 2003.
E. Buonanno. Functional Programming in C#: How to write better C# code. Manning, 2017.
J. Leo. The Well-Grounded Rubyist. Manning, 2019.

Lex Sheehan. Learning Functional Programming in Go: Change the way you approach your applications
using functional programming in Go. Packt Publishing Ltd, 2017.

Rob Aley. Pro Functional PHP Programming. Springer, 2017.

Marco Vermeulen, Runar Bjarnason, and Paul Chiusano. Functional Programming in Kotlin. Simon
and Schuster, 2021.

Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.

L. Rosenfeld and A.B. Downey. Think Perl 6: How to Think Like a Computer Scientist. O’Reilly
Media, 2017.

L. Atencio. Functional Programming in JavaScript: How to improve your JavaScript programs using
functional techniques. Manning, 2016.

35

[64]
[65]

[66]
7

Rod Burstall. Christopher strachey—understanding programming languages. Higher Order Symbol.
Comput., 13(1-2):51-55, apr 2000.

Lawrence C. Paulson. ML for the Working Programmer (2nd Ed.). Cambridge University Press, USA,
1996.

Donald Michie. “memo” functions and machine learning. Nature, 218:19-22, 1968.
John C Reynolds. Automatic computation of data set definitions. 1969.

Neil D Jones and Steven S Muchnick. Flow analysis and optimization of lisp-like structures. In
Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 244-256, 1979.

Neil D Jones and Steven S Muchnick. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 6674, 1982.

Thoms Ball. The concept of dynamic analysis. ACM SIGSOFT Software Engineering Notes, 24(6):216—
234, 1999.

James R Larus and Thomas Ball. Rewriting executable files to measure program behavior. Software:
Practice and Ezxperience, 24(2):197-218, 1994.

Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003: ICSE Workshop
on Dynamic Analysis, pages 24-27, 2003.

Thomas Ball and James R Larus. Efficient path profiling. In Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 29, pages 46-57. IEEE, 1996.

Anjana Gosain and Ganga Sharma. A survey of dynamic program analysis techniques and tools. In
Suresh Chandra Satapathy, Bhabendra Narayan Biswal, Siba K. Udgata, and J.K. Mandal, editors,
Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and
Applications (FICTA) 2014, pages 113-122, Cham, 2015. Springer International Publishing.

Markus Mock. Dynamic analysis from the bottom up. In WODA 2003 ICSE Workshop on Dynamic
Analysis, page 13, 2003.

Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and Jeaha Yang. Visualizing
the execution of java programs. In Software Visualization: International Seminar Dagstuhl Castle,
Germany, May 20-25, 2001 Revised Papers, pages 151-162. Springer, 2002.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89-100, jun 2007.

Parasoft Inc. Automating c¢/c++ runtime error detection with parasoft insure++. Technical report,
2006. White Paper.

David J Pearce, Matthew Webster, Robert Berry, and Paul HJ Kelly. Profiling with aspectj. Software:
Practice and Experience, 37(7):747-777, 2007.

Reed Hastings. Purify: Fast detection of memory leaks and access errors. In Proceedings of the USENIX
Winter’92 Conference, pages 125-136, 1992.

Jonas Maebe, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere. Javana: A system for building
customized java program analysis tools. ACM SIGPLAN Notices, 41(10):153-168, 2006.

Alex Skaletsky, Tevi Devor, Nadav Chachmon, Robert Cohn, Kim Hazelwood, Vladimir Vladimirov, and
Moshe Bach. Dynamic program analysis of microsoft windows applications. In 2010 IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS), pages 2-12. IEEE, 2010.

Michael D. Ernst. Dynamically Discovering Likely Program Invariants. Ph.D., University of Washington
Department of Computer Science and Engineering, Seattle, Washington, August 2000.

36

[
[
[
[

[84]

101]
102]
103]
104]

Sudheendra Hangal and Monica S Lam. Tracking down software bugs using automatic anomaly
detection. In Proceedings of the 24th international conference on Software engineering, pages 291-301,
2002.

Eric Bodden and Klaus Havelund. Aspect-oriented race detection in java. IEEE Transactions on
Software Engineering, 36(4):509-527, 2010.

Bruno Dufour, Laurie Hendren, and Clark Verbrugge. * j: a tool for dynamic analysis of java programs.
In Companion of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 306-307, 2003.

Paramvir Singh. Design and validation of dynamic metrics for object-oriented software systems. 2009.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Addresssanitizer:
A fast address sanity checker. In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, page 28, USA, 2012. USENIX Association.

Yann-Gaél Guéhéneuc, Rémi Douence, and Narendra Jussien. No java without caffeine: A tool for
dynamic analysis of java programs. In Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, ASE 02, page 117, USA, 2002. IEEE Computer Society.

Ivo Vieira Gomes, Pedro Morgado, Tiago Gomes, and Rodrigo M. L. M. Moreira. An overview on the
static code analysis approach in software development. 2009.

Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program profiling for
software maintenance with applications to the year 2000 problem. In Proceedings of the 6th FEuropean
SOFTWARE ENGINEERING conference held jointly with the 5th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 432-449, 1997.

M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Syst. J.,
15(3):182—211, sep 1976.

Bilal Ilyas and Islam Elkhalifa. Static code analysis: A systematic literature review and an industrial
survey. 2016.

Aybuke Aurum, Hakan Petersson, and Claes Wohlin. State-of-the-art: software inspections after 25
years. Software Testing, Verification and Reliability, 12(3):133-154, 2002.

Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an abstract interpretation perspective.
Mit Press, 2020.

Anders Mgller and Michael I Schwartzbach. Static program analysis. Notes. Feb, 2012.
S. C. Johnson and Murray Hill. Lint, a ¢ program checker. 1978.

David Hovemeyer and William Pugh. Finding more null pointer bugs, but not too many. In Proceedings of
the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’07, page 9-14, New York, NY, USA, 2007. Association for Computing Machinery.

Spotbugs. https://spotbugs.github.io/.

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu,
and Danfeng (Daphne) Yao. Cryptoguard: High precision detection of cryptographic vulnerabilities
in massive-sized java projects. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS '19, page 24552472, New York, NY, USA, 2019. Association for
Computing Machinery.

Pmd. https://pmd.github.io/.
mygcc. http://mygcc.free.fr/.
Synopsys. https://scan.coverity.com/.

Clang static analyzer. https://clang-analyzer.llvm.org/.

37

https://spotbugs.github.io/
https://pmd.github.io/
http://mygcc.free.fr/
https://scan.coverity.com/
https://clang-analyzer.llvm.org/

[105]
[106]
[107]
[108]

109

110

[111

[112
[113

[114

[115

116

(117

118

[119]

[120]

[121]
[122]
[123]
[124]

[125]

Pylint. https://pylint.readthedocs.io/en/stable/.
pyflakes. https://pypi.org/project/pyflakes/.
frosted. https://pypi.org/project/frosted/.

Stefan Kriiger, Johannes Spéath, Karim Ali, Eric Bodden, and Mira Mezini. CrySL: An Extensible
Approach to Validating the Correct Usage of Cryptographic APIs. In Todd Millstein, editor, 32nd
European Conference on Object-Oriented Programming (ECOOP 2018), volume 109 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 10:1-10:27, Dagstuhl, Germany, 2018. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Alan Mathison Turing et al. On computable numbers, with an application to the entscheidungsproblem.
J. of Math, 58(345-363):5, 1936.

Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical society, 74(2):358-366, 1953.

Thomas Gilray. Introspective Polyvariance for Control-Flow Analyses. PhD thesis, The University of
Utah, 2017.

Guillermo J Rozas. Liar, an algol-like compiler for scheme. sb thesis, 1984.

Peter Sestoft. Replacing function parameters by global variables. master’s thesis, diku. Computer
Science Department, University of Copenhagen, Copenhagen, Denmark, 1988.

Peter Sestoft. Replacing function parameters by global variables. In Proceedings of the Fourth
International Conference on Functional Programming Languages and Computer Architecture, FPCA
’89, page 39-53, New York, NY, USA, 1989. Association for Computing Machinery.

Anders Bondorf. Automatic autoprojection of higher order recursive equations. Science of Computer
Programming, 17(1):3-34, 1991.

Jens Palsberg. Global program analysis in constraint form. In Sophie Tison, editor, Trees in Algebra
and Programming — CAAP’9}, pages 276-290, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

Anders Bondorf and Jesper Jgrgensen. Efficient analyses for realistic off-line partial evaluation. Journal
of Functional Programming, 3(3):315-346, 1993.

Jens Palsberg. Equality-based flow analysis versus recursive types. ACM Trans. Program. Lang. Syst.,
20(6):1251-1264, nov 1998.

Neil D. Jones and Nils Andersen. Flow analysis of lazy higher-order functional programs. Theoretical
Computer Science, 375(1):120-136, 2007. Festschrift for John C. Reynolds’s 70th birthday.

Manuel Serrano. Control flow analysis: A functional languages compilation paradigm. In Proceedings
of the 1995 ACM Symposium on Applied Computing, SAC 95, page 118-122, New York, NY, USA,
1995. Association for Computing Machinery.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure conversion for typed
languages. In European Symposium on Programming, 2000.

Christian Mossin. Flow analysis of typed higher-order programs. PhD thesis, University of Copenhagen,
1997.

Jens Palsberg. Closure analysis in constraint form. ACM Trans. Program. Lang. Syst., 17(1):47-62, jan
1995.

J. Michael Ashley and R. Kent Dybvig. A practical and flexible flow analysis for higher-order languages.
ACM Trans. Program. Lang. Syst., 20(4):845-868, jul 1998.

David Van Horn and Harry G. Mairson. Deciding kcfa is complete for exptime. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP 08, page 275-282,
New York, NY, USA, 2008. Association for Computing Machinery.

38

https://pylint.readthedocs.io/en/stable/
https://pypi.org/project/pyflakes/
https://pypi.org/project/frosted/

[126] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-order languages.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 95, page 393-407, New York, NY, USA, 1995. Association for Computing Machinery.

[127] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the k-cfa paradox:
Iluminating functional vs. object-oriented program analysis. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI '10, page 305-315, New York,
NY, USA, 2010. Association for Computing Machinery.

[128] John C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-Order and
Symbolic Computation, 11:363-397, 1972.

129

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 96,
page 271-283, New York, NY, USA, 1996. Association for Computing Machinery.

130

Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes polyvariance: A
unified methodology for polyvariant control-flow analysis. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, page 407-420, New York, NY, USA,
2016. Association for Computing Machinery.

[131

Matthew Might. Environment analysis of higher-order languages. Georgia Institute of Technology,
2007.

[132] S.J. Russell, S. Russell, and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson series in
artificial intelligence. Pearson, 2020.

[133] R. Brachman and H. Levesque. Knowledge Representation and Reasoning. The Morgan Kaufmann
Series in Artificial Intelligence. Elsevier Science, 2004.

[134

Jonathan Aldrich. Lecture notes: Interprocedural analysis. https://www.cs.cmu.edu/~aldrich/
courses/15-8190-13sp/resources/interprocedural.pdf, 2013. Course note for the course Program
Analysis.

[135] Neil D. Jones and Steven S. Muchnick. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In ACM-SIGACT Symposium on Principles of Programming
Languages, 1982.

136

Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In Proceedings of
the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation, PLDI
94, page 230-241, New York, NY, USA, 1994. Association for Computing Machinery.

137

Francois Bourdoncle. Interprocedural abstract interpretation of block structured languages with
nested procedures, aliasing and recursivity. In International Workshop on Programming Language
Implementation and Logic Programming, pages 307-323. Springer, 1990.

[138] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. SIGPLAN Not.,
29(6):230-241, jun 1994.

139

Flemming Nielson and Hanne Riis Nielson. Interprocedural control flow analysis. In S. Doaitse Swierstra,
editor, Programming Languages and Systems, pages 20-39, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

140

Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural data flow analysis. New York
University. Courant Institute of Mathematical Sciences, 1978.

[141

Markus Miiller-Olm and Helmut Seidl. Precise interprocedural analysis through linear algebra. ACM
SIGPLAN Notices, 39(1):330-341, 2004.

142

Keith D. Cooper and Linda Torczon. Chapter 9 - data-flow analysis. In Keith D. Cooper and Linda
Torczon, editors, Engineering a Compiler (Second Edition), pages 475-538. Morgan Kaufmann, Boston,
second edition edition, 2012.

39

https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/interprocedural.pdf
https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/interprocedural.pdf

[143] IBM. Official documentation on: Interprocedural analysis (ipa). https://www.ibm.com/docs/en/i/7.
57topic=techniques-interprocedural-analysis-ipa, 2023.

[144] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. Interprocedural constant propaga-
tion. ACM SIGPLAN Notices, 21(7):152-161, 1986.

[145] Keith D Cooper, Ken Kennedy, and Linda Torczon. The impact of interprocedural analysis and
optimization in the rn programming environment. ACM Transactions on Programming Languages and
Systems (TOPLAS), 8(4):491-523, 1986.

[146] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. I0S press,
2009.

[147) Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Commaun. ACM, 5(7):394-397, jul 1962.

[148] Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satisfiability Testing, pages 502-518, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[149] Josep Argelich and Felip Manya. Exact max-sat solvers for over-constrained problems. J. Heuristics,
12:375-392, 09 2006.

[150] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chalff:
Engineering an efficient sat solver. In Proceedings of the 38th Annual Design Automation Conference,
DAC 01, page 530-535, New York, NY, USA, 2001. Association for Computing Machinery.

[151] Wu Kehui, Wang Tao, Zhao Xinjie, and Liu Huiying. Cryptominisat solver based algebraic side-channel
attack on present. In 2011 First International Conference on Instrumentation, Measurement, Computer,
Communication and Control, pages 561-565, 2011.

[152] Adrian Balint and Uwe Schoning. Choosing probability distributions for stochastic local search and
the role of make versus break. In Proceedings of the 15th International Conference on Theory and
Applications of Satisfiability Testing, SAT’12, page 16-29, Berlin, Heidelberg, 2012. Springer-Verlag.

[153] Joao Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional satisfiability.
IEEE Trans. Computers, 48:506-521, 1999.

[154] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog (and never dared
to ask). IEEE Trans. on Knowl. and Data Eng., 1(1):146-166, mar 1989.

[155] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[156] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using datalog with binary decision
diagrams for program analysis. In Kwangkeun Yi, editor, Programming Languages and Systems, pages
97-118, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[157] Oege De Moor, Georg Gottlob, Tim Furche, and Andrew Sellers. Datalog Reloaded: First International
Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702.
Springer, 2012.

[158] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging applications:
An interactive tutorial. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, page 1213-1216, New York, NY, USA, 2011. Association for
Computing Machinery.

[159] J.M. Hellerstein and M. Stonebraker. Readings in Database Systems. Mit Press. MIT Press, 2005.

[160] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the Twenty-First
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02, page
233-246, New York, NY, USA, 2002. Association for Computing Machinery.

40

https://www.ibm.com/docs/en/i/7.5?topic=techniques-interprocedural-analysis-ipa
https://www.ibm.com/docs/en/i/7.5?topic=techniques-interprocedural-analysis-ipa

[161] Boon Thau Loo, Joseph M. Hellerstein, Ton Stoica, and Raghu Ramakrishnan. Declarative routing:
extensible routing with declarative queries. In Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 2005.

[162] Trevor Jim. Sd3: a trust management system with certified evaluation. Proceedings 2001 IEEE
Symposium on Security and Privacy. SEP 2001, pages 106-115, 2001.

[163] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein, and Russell Sears.
Boom analytics: Exploring data-centric, declarative programming for the cloud. In Proceedings of the
5th European Conference on Computer Systems, EuroSys '10, page 223-236, New York, NY, USA, 2010.
Association for Computing Machinery.

[164

Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated points-to
analyses. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA 09, page 243-262, New York, NY, USA, 2009. Association
for Computing Machinery.

165

Herbert Jordan, Bernhard Scholz, and Pavle Subotic. Soufflé: On synthesis of program analyzers. In
International Conference on Computer Aided Verification, 2016.

166

Magnus Madsen, Ming-Ho Yee, and Ondfej Lhotdk. From datalog to flix: A declarative language for
fixed points on lattices. SIGPLAN Not., 51(6):194-208, jun 2016.

167

Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: A functional datalog. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, page
214227, New York, NY, USA, 2016. Association for Computing Machinery.

168

Tamaés Szabd, Sebastian Erdweg, and Markus Volter. Inca: A dsl for the definition of incremental
program analyses. 2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 320-331, 2016.

169

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski. Seamless deductive inference via macros.
In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction, CC
2022, page 77-88, New York, NY, USA, 2022. Association for Computing Machinery.

[170] Bas Ketsman and Paraschos Koutris. Modern datalog engines. Found. Trends Databases, 12(1):1-68,
jun 2022.

[171] Thomas Gilray, Sidharth Kumar, and Kristopher Micinski. Compiling data-parallel datalog. In
Proceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction, CC 2021,
page 23-35, New York, NY, USA, 2021. Association for Computing Machinery.

172

Magnus Madsen and Ondiej Lhotak. Fixpoints for the masses: Programming with first-class datalog
constraints. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[173

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of changes for higher-
order languages: Incrementalizing A-calculi by static differentiation. SIGPLAN Not., 49(6):145-155,
jun 2014.

[174

Paolo G. Giarrusso, Yann Régis-Gianas, and Philipp Schuster. Incremental A-calculus in cache-transfer
style. In Luis Caires, editor, Programming Languages and Systems, pages 553-580, Cham, 2019. Springer
International Publishing.

(175

Frank McSherry and The Rust Developers. Rust-lang/datafrog: A lightweight datalog engine in rust.
https://github.com/rust-lang/datafrog, 2021.

[176

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo.
Big data analytics with datalog queries on spark. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, page 1135-1149, New York, NY, USA, 2016. Association for
Computing Machinery.

41

https://github.com/rust-lang/datafrog

	Abstract
	Introduction
	Functional Programming
	Lambda Calculus
	Fundamental Concepts
	First-class Functions
	Higher-order Functions
	Pure Functions
	Strict and Lazy Evaluation

	Functional Program Analysis
	Dynamic Analysis
	Static Analysis
	Control Flow Analysis
	0-CFA
	k-CFA

	Language and Compiler Design
	The Brouhaha Language
	Compiler Design
	Desugaring
	Alphatization
	ANF Conversion
	CPS Conversion
	Closure Conversion
	Code Generation

	Abstract Interpretation
	Limitation of Concrete Interpretation
	Abstract Interpretation and Galois Connection
	Challenges and Limitations
	Abstracting Abstract Machines (AAM)
	CEK Machine
	CESK Machine
	CESK* Machine

	Environment Analysis
	Abstract Counting

	Implementation Approaches For Reasoning Systems
	Interprocedural Program Analysis (IPA)
	SAT
	Datalog
	Soufflé
	Flix
	Datafun
	IncA
	Ascent
	Slog
	Slog-Based Analysis

	Future Research Direction
	Conclusion

